Jean-Pierre Pouget

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1701568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydroxyl radicals and DNA base damage. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1999, 424, 9-21.	0.4	544
2	High-Performance Liquid Chromatographyâ^'Tandem Mass Spectrometry Measurement of Radiation-Induced Base Damage to Isolated and Cellular DNA. Chemical Research in Toxicology, 2000, 13, 1002-1010.	1.7	277
3	Clinical radioimmunotherapy—the role of radiobiology. Nature Reviews Clinical Oncology, 2011, 8, 720-734.	12.5	191
4	The Potential and Hurdles of Targeted Alpha Therapy – Clinical Trials and Beyond. Frontiers in Oncology, 2014, 3, 324.	1.3	142
5	Introduction to Radiobiology of Targeted Radionuclide Therapy. Frontiers in Medicine, 2015, 2, 12.	1.2	131
6	Facts and artifacts in the measurement of oxidative base damage to DNA. Free Radical Research, 1998, 29, 541-550.	1.5	125
7	General aspects of the cellular response to low- and high-LET radiation. European Journal of Nuclear Medicine and Molecular Imaging, 2001, 28, 541-561.	2.2	121
8	Targeted and Off-Target (Bystander and Abscopal) Effects of Radiation Therapy: Redox Mechanisms and Risk/Benefit Analysis. Antioxidants and Redox Signaling, 2018, 29, 1447-1487.	2.5	104
9	Assessment of oxidative base damage to isolated and cellular DNA by HPLC-MS/MS measurement1,2 1This article is part of a series of reviews on "Oxidative DNA Damage and Repair.―The full list of papers may be found on the homepage of the journal. 2Guest Editor: Miral Dizdaroglu. Free Radical Biology and Medicine, 2002, 33, 441-449.	1.3	99
10	Cell Membrane is a More Sensitive Target than Cytoplasm to Dense Ionization Produced by Auger Electrons. Radiation Research, 2008, 170, 192-200.	0.7	99
11	Radiation-Induced DNA Damage: Formation, Measurement, and Biochemical Features. Journal of Environmental Pathology, Toxicology and Oncology, 2004, 23, 33-44.	0.6	96
12	Minor contribution of direct ionization to DNA base damage inducedby heavy ions. International Journal of Radiation Biology, 2006, 82, 119-127.	1.0	93
13	[14] Singlet oxygen DNA damage products: Formation and measurement. Methods in Enzymology, 2000, 319, 143-153.	0.4	86
14	Localized Irradiation of Cell Membrane by Auger Electrons Is Cytotoxic Through Oxidative Stress-Mediated Nontargeted Effects. Antioxidants and Redox Signaling, 2016, 25, 467-484.	2.5	68
15	Place of 18F-FDG-PET with computed tomography in the diagnostic algorithm of patients with fever of unknown origin. European Journal of Clinical Microbiology and Infectious Diseases, 2012, 31, 1727-1733.	1.3	63
16	Immunotherapy of triple-negative breast cancer with cathepsin D-targeting antibodies. , 2019, 7, 29.		63
17	Noninternalizing Monoclonal Antibodies Are Suitable Candidates for 1251 Radioimmunotherapy of Small-Volume Peritoneal Carcinomatosis. Journal of Nuclear Medicine, 2009, 50, 2033-2041.	2.8	58
18	Revisiting the Radiobiology of Targeted Alpha Therapy. Frontiers in Medicine, 2021, 8, 692436.	1.2	54

2

#	Article	IF	CITATIONS
19	Comparison between Internalizing Anti-HER2 mAbs and Non-Internalizing Anti-CEA mAbs in Alpha-Radioimmunotherapy of Small Volume Peritoneal Carcinomatosis Using 212Pb. PLoS ONE, 2013, 8, e69613.	1.1	54
20	General overview of radioimmunotherapy of solid tumors. Immunotherapy, 2013, 5, 467-487.	1.0	39
21	Comparison of commercial dosimetric software platforms in patients treated with ¹⁷⁷ Luâ€DOTATATE for peptide receptor radionuclide therapy. Medical Physics, 2020, 47, 4602-4615.	1.6	34
22	Implementation of patient dosimetry in the clinical practice after targeted radiotherapy using [177Lu-[DOTA0, Tyr3]-octreotate. EJNMMI Research, 2018, 8, 103.	1.1	31
23	Radiation-Induced Immunity and Toxicities: The Versatility of the cGAS-STING Pathway. Frontiers in Immunology, 2021, 12, 680503.	2.2	31
24	Modulation of DNA Damage by Pentoxifylline and α-Tocopherol in Skin Fibroblasts Exposed to Gamma Rays. Radiation Research, 2005, 164, 63-72.	0.7	30
25	DNA damage in cultured skin microvascular endothelial cells exposed to gamma rays and treated by the combination pentoxifylline and α-tocopherol. International Journal of Radiation Biology, 2006, 82, 309-321.	1.0	30
26	Targeted Cancer Therapy with a Novel Anti-CD37 Beta-Particle Emitting Radioimmunoconjugate for Treatment of Non-Hodgkin Lymphoma. PLoS ONE, 2015, 10, e0128816.	1.1	30
27	Apoptosis and p53 are not involved in the anti-tumor efficacy of 125I-labeled monoclonal antibodies targeting the cell membrane. Nuclear Medicine and Biology, 2013, 40, 471-480.	0.3	28
28	Improved realism of hybrid mouse models may not be sufficient to generate reference dosimetric data. Medical Physics, 2013, 40, 052501.	1.6	26
29	The human Müllerian inhibiting substance type II receptor as immunotherapy target for ovarian cancer. MAbs, 2014, 6, 1314-1326.	2.6	26
30	Drugs That Modify Cholesterol Metabolism Alter the p38/JNK-Mediated Targeted and Nontargeted Response to Alpha and Auger Radioimmunotherapy. Clinical Cancer Research, 2019, 25, 4775-4790.	3.2	26
31	Antibody PEGylation in bioorthogonal pretargeting with trans-cyclooctene/tetrazine cycloaddition: in vitro and in vivo evaluation in colorectal cancer models. Scientific Reports, 2017, 7, 14918.	1.6	25
32	Tetraspanin 8 (TSPAN 8) as a potential target for radio-immunotherapy of colorectal cancer. Oncotarget, 2017, 8, 22034-22047.	0.8	25
33	DNA damage-centered signaling pathways are effectively activated during low dose-rate Auger radioimmunotherapy. Nuclear Medicine and Biology, 2014, 41, e75-e83.	0.3	24
34	Modulation of exogenous and endogenous levels of thioredoxin in human skin fibroblasts prevents DNA damaging effect of ultraviolet A radiation. Free Radical Biology and Medicine, 2001, 30, 537-546.	1.3	23
35	Brief Intraperitoneal Radioimmunotherapy of Small Peritoneal Carcinomatosis Using High Activities of Noninternalizing ¹²⁵ I-Labeled Monoclonal Antibodies. Journal of Nuclear Medicine, 2010, 51, 1748-1755.	2.8	23
36	Glucose metabolism in nine patients with probable sporadic Creutzfeldt–Jakob disease: FDG-PET study using SPM and individual patient analysis. Journal of Neurology, 2013, 260, 3055-3064.	1.8	23

JEAN-PIERRE POUGET

#	Article	IF	CITATIONS
37	Pretargeted radioimmunotherapy and SPECT imaging of peritoneal carcinomatosis using bioorthogonal click chemistry: probe selection and first proof-of-concept. Theranostics, 2019, 9, 6706-6718.	4.6	23
38	Call to arms: need for radiobiology in molecular radionuclide therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1588-1590.	3.3	23
39	Peptides in Receptor-Mediated Radiotherapy: From Design to the Clinical Application in Cancers. Frontiers in Oncology, 2013, 3, 247.	1.3	20
40	Vaccination with human anti-trastuzumab anti-idiotype scFv reverses HER2 immunological tolerance and induces tumor immunity in MMTV.f.huHER2(Fo5) mice. Breast Cancer Research, 2011, 13, R17.	2.2	19
41	The anti-tumor efficacy of 3C23K, a glyco-engineered humanized anti-MISRII antibody, in an ovarian cancer model is mainly mediated by engagement of immune effector cells. Oncotarget, 2017, 8, 37061-37079.	0.8	16
42	Realistic multi-cellular dosimetry for ¹⁷⁷ Lu-labelled antibodies: model and application. Physics in Medicine and Biology, 2016, 61, 6935-6952.	1.6	15
43	Radiolabeled Antibodies Against Müllerian-Inhibiting Substance Receptor, Type II: New Tools for a Theranostic Approach in Ovarian Cancer. Journal of Nuclear Medicine, 2018, 59, 1234-1242.	2.8	15
44	Therapeutic antibodies $\hat{a} \in$ " natural and pathological barriers and strategies to overcome them. , 2022, 233, 108022.		15
45	Radiocurability by Targeting Tumor Necrosis Factor-α Using a Bispecific Antibody in Carcinoembryonic Antigen Transgenic Mice. International Journal of Radiation Oncology Biology Physics, 2007, 69, 1231-1237.	0.4	14
46	Targeted Radionuclide Therapy Using Auger Electron Emitters: The Quest for the Right Vector and the Right Radionuclide. Pharmaceutics, 2021, 13, 980.	2.0	14
47	From the target cell theory to a more integrated view of radiobiology in Targeted radionuclide therapy: The Montpellier group's experience. Nuclear Medicine and Biology, 2022, 104-105, 53-64.	0.3	14
48	Evaluation of two 125I-radiolabeled acridine derivatives for Auger-electron radionuclide therapy of melanoma. Investigational New Drugs, 2014, 32, 587-597.	1.2	12
49	The therapeutic effectiveness of 177Lu-lilotomab in B-cell non-Hodgkin lymphoma involves modulation of G2/M cell cycle arrest. Leukemia, 2020, 34, 1315-1328.	3.3	12
50	Assessment of the Stratos, a New Pencil-Beam Bone Densitometer: Dosimetry, Precision, and Cross Calibration. Journal of Clinical Densitometry, 2011, 14, 395-406.	0.5	11
51	Complex cell geometry and sources distribution model for Monte Carlo single cell dosimetry with iodine 125 radioimmunotherapy. Nuclear Instruments & Methods in Physics Research B, 2016, 366, 227-233.	0.6	11
52	In myotonic dystrophy type 1 reduced FDG-uptake on FDG-PET is most severe in Brodmann area 8. BMC Neurology, 2016, 16, 100.	0.8	7
53	Synthesis and in vitro antitumour activity of carboplatin analogues containing functional handles compatible for conjugation to drug delivery systems. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127527.	1.0	7
54	Rapid communication: insights into the role of extracellular vesicles during Auger radioimmunotherapy. International Journal of Radiation Biology, 2023, 99, 109-118.	1.0	6

JEAN-PIERRE POUGET

#	Article	IF	CITATIONS
55	Immunostimulatory effects of radioimmunotherapy. , 2022, 10, e004403.		5
56	Tandem myeloablative1311-rituximab radioimmunotherapy and high-dose chemotherapy in refractory/relapsed non-Hodgkin lymphoma patients. Immunotherapy, 2013, 5, 1283-1286.	1.0	3
57	18th European Symposium on Radiopharmacy and Radiopharmaceuticals. EJNMMI Radiopharmacy and Chemistry, 2016, 1, .	1.8	2
58	Artificial nutrition in patients with cancer has no impact on tumour glucose metabolism: Results of the PETANC Study. Clinical Nutrition, 2019, 38, 2121-2126.	2.3	2
59	Status of radiobiology in molecular radionuclide therapy – Hope for the future. Nuclear Medicine and Biology, 2022, 110-111, 45-46.	0.3	1
60	Basics of radiobiology. , 2022, , .		0
61	Radiobiology of Targeted Alpha Therapy. , 2022, , 380-403.		0