Nicole J Rijs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1701299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gas Phase Studies of the Pesci Decarboxylation Reaction: Synthesis, Structure, and Unimolecular and Bimolecular Reactivity of Organometallic Ions. Accounts of Chemical Research, 2015, 48, 329-340.	15.6	107
2	Gas-Phase Synthesis of the Homo and Hetero Organocuprate Anions [MeCuMe] ⁻ , [EtCuEt] ⁻ , and [MeCuR] ⁻ . Journal of the American Chemical Society, 2008, 130, 1069-1079.	13.7	77
3	Unimolecular Reactions of Organocuprates and Organoargentates. Organometallics, 2010, 29, 2282-2291.	2.3	61
4	Gas-Phase Synthesis of Organoargenate Anions and Comparisons with Their Organocuprate Analogues. Organometallics, 2009, 28, 2684-2692.	2.3	52
5	Forming trifluoromethylmetallates: competition between decarboxylation and C–F bond activation of group 11 trifluoroacetate complexes, [CF3CO2ML]â°. Dalton Transactions, 2012, 41, 3395.	3.3	49
6	Gas-Phase Reactivity of Group 11 Dimethylmetallates with Allyl Iodide. Journal of the American Chemical Society, 2012, 134, 2569-2580.	13.7	48
7	Ligand ontrolled CO ₂ Activation Mediated by Cationic Titanium Hydride Complexes, [LTiH] ⁺ (L=Cp ₂ , O). Chemistry - A European Journal, 2015, 21, 8483-8490.	3.3	38
8	Dimethylcuprate Undergoes a Dyotropic Rearrangement. Chemistry - A European Journal, 2010, 16, 2674-2678.	3.3	37
9	Gas phase synthesis and reactivity of dimethylaurate. Dalton Transactions, 2010, 39, 8655.	3.3	35
10	Penetrating the Elusive Mechanism of Copper-Mediated Fluoromethylation in the Presence of Oxygen through the Gas-Phase Reactivity of Well-Defined [LCuO] ⁺ Complexes with Fluoromethanes (CH _(4–<i>n</i>) F _{<i>n</i>} , <i>n</i> = 1–3). Journal of the American Chemical Society, 2016, 138, 3125-3135.	13.7	32
11	On divorcing isomers, dissecting reactivity, and resolving mechanisms of propane CH and aryl CX (X=halogen) bond activations mediated by a ligated copper(III) oxo complex. Chemical Physics Letters, 2014, 608, 408-424.	2.6	30
12	Dimethylcuprate-Catalyzed Decarboxylative Coupling of Allyl Acetate. Organometallics, 2012, 31, 8012-8023.	2.3	27
13	Unraveling Organocuprate Complexity: Fundamental Insights into Intrinsic Group Transfer Selectivity in Alkylation Reactions. Journal of Organic Chemistry, 2014, 79, 1320-1334.	3.2	21
14	On the Activation of Methane and Carbon Dioxide by [HTaO] ⁺ and [TaOH] ⁺ in the Gas Phase: A Mechanistic Study. Chemistry - A European Journal, 2016, 22, 10581-10589.	3.3	16
15	Theoretical Approaches To Estimating Homolytic Bond Dissociation Energies of Organocopper and Organosilver Compounds. Journal of Physical Chemistry A, 2012, 116, 8910-8917.	2.5	15
16	Effect of Adduct Formation with Molecular Nitrogen on the Measured Collisional Cross Sections of Transition Metal–1,10-Phenanthroline Complexes in Traveling Wave Ion-Mobility Spectrometry: N ₂ Is Not Always an "Inert―Buffer Gas. Analytical Chemistry, 2015, 87, 9769-9776.	6.5	14
17	Reaction Monitoring and Structural Characterisation of Coordination Driven Self-Assembled Systems by Ion Mobility-Mass Spectrometry. Frontiers in Chemistry, 2021, 9, 682743.	3.6	11
	ligand Effects on the Reactivity of [CoX]+ (X2=%2=%-CN E C Br. O. OH) Towards CO2. Cos-Phase Congrat	ion	

Ligand Effects on the Reactivity of [CoX]+ (X = CN, F, Cl, Br, O, OH) Towards CO2: Gas-Phase Generation 2.8 9 of the Elusive Cyanoformate by [Co(CN)]+ and [Fe(CN)]+. Topics in Catalysis, 2018, 61, 575-584.

#	Article	IF	CITATIONS
19	Co-existence of five- and six-coordinate iron(<scp>ii</scp>) species captured in a geometrically strained spin-crossover Hofmann framework. Dalton Transactions, 2022, 51, 9596-9600.	3.3	1