Stefanie Wedepohl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/170123/publications.pdf

Version: 2024-02-01

49 papers

1,185 citations

331670 21 h-index 32 g-index

51 all docs

51 docs citations

51 times ranked

1899 citing authors

#	Article	IF	CITATIONS
1	A Microgel Construction Kit for Bioorthogonal Encapsulation and pHâ€Controlled Release of Living Cells. Angewandte Chemie - International Edition, 2013, 52, 13538-13543.	13.8	145
2	l-Selectin – A dynamic regulator of leukocyte migration. European Journal of Cell Biology, 2012, 91, 257-264.	3.6	66
3	NIR- and thermo-responsive semi-interpenetrated polypyrrole nanogels for imaging guided combinational photothermal and chemotherapy. Journal of Controlled Release, 2019, 311-312, 147-161.	9.9	64
4	Responsive nanogels for application as smart carriers in endocytic pH-triggered drug delivery systems. European Polymer Journal, 2016, 78, 14-24.	5.4	48
5	In vivo comparative study of distinct polymeric architectures bearing a combination of paclitaxel and doxorubicin at a synergistic ratio. Journal of Controlled Release, 2017, 257, 118-131.	9.9	48
6	N-Glycan Analysis of Recombinant L-Selectin Reveals Sulfated GalNAc and GalNAcâ^'GalNAc Motifs. Journal of Proteome Research, 2010, 9, 3403-3411.	3.7	45
7	Polymeric near-infrared absorbing dendritic nanogels for efficient in vivo photothermal cancer therapy. Nanoscale, 2016, 8, 5852-5856.	5.6	44
8	Crosslinked casein-based micelles as a dually responsive drug delivery system. Polymer Chemistry, 2018, 9, 3499-3510.	3.9	41
9	pH-Activatable Singlet Oxygen-Generating Boron-dipyrromethenes (BODIPYs) for Photodynamic Therapy and Bioimaging. Journal of Medicinal Chemistry, 2020, 63, 1699-1708.	6.4	41
10	Carbohydrate–PNA and Aptamer–PNA Conjugates for the Spatial Screening of Lectins and Lectin Assemblies. ChemBioChem, 2013, 14, 236-250.	2.6	39
11	Immobilization of Stimuli-Responsive Nanogels onto Honeycomb Porous Surfaces and Controlled Release of Proteins. Langmuir, 2016, 32, 1854-1862.	3.5	35
12	Polyglutamic acid-based crosslinked doxorubicin nanogels as an anti-metastatic treatment for triple negative breast cancer. Journal of Controlled Release, 2021, 332, 10-20.	9.9	35
13	Matrix Metalloproteinase-sensitive Multistage Nanogels Promote Drug Transport in 3D Tumor Model. Theranostics, 2020, 10, 91-108.	10.0	29
14	Nanoparticles from supramolecular polylactides overcome drug resistance of cancer cells. European Polymer Journal, 2018, 109, 117-123.	5.4	27
15	The Effect of Polyglycerol Sulfate Branching On Inflammatory Processes. Macromolecular Bioscience, 2014, 14, 643-654.	4.1	26
16	Stereocomplexed PLA microspheres: Control over morphology, drug encapsulation and anticancer activity. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110544.	5.0	26
17	Overcoming drug resistance with on-demand charged thermoresponsive dendritic nanogels. Nanomedicine, 2017, 12, 117-129.	3.3	25
18	Critical parameters for the controlled synthesis of nanogels suitable for temperature-triggered protein delivery. Materials Science and Engineering C, 2019, 100, 141-151.	7.3	24

#	Article	IF	CITATIONS
19	Inhibition of Herpes Simplex Virus Type 1 Attachment and Infection by Sulfated Polyglycerols with Different Architectures. Biomacromolecules, 2021, 22, 1545-1554.	5.4	24
20	Rational design of dendritic thermoresponsive nanogels that undergo phase transition under endolysosomal conditions. Journal of Materials Chemistry B, 2017, 5, 866-874.	5.8	23
21	One-pot synthesis of doxorubicin-loaded multiresponsive nanogels based on hyperbranched polyglycerol. Chemical Communications, 2015, 51, 5264-5267.	4.1	22
22	Near Infrared Dye Conjugated Nanogels for Combined Photodynamic and Photothermal Therapies. Macromolecular Bioscience, 2016, 16, 1432-1441.	4.1	22
23	Multiply Intercalator-Substituted Cu(II) Cyclen Complexes as DNA Condensers and DNA/RNA Synthesis Inhibitors. Inorganic Chemistry, 2018, 57, 5004-5012.	4.0	17
24	Effect of Delivery Platforms Structure on the Epidermal Antigen Transport for Topical Vaccination. Biomacromolecules, 2018, 19, 4607-4616.	5.4	16
25	Forty Years after the Discovery of Its Nucleolytic Activity: [Cu(phen) ₂] ²⁺ Shows Unattended DNA Cleavage Activity upon Fluorination. Chemistry - A European Journal, 2021, 27, 3273-3277.	3.3	15
26	Synthesis and Evaluation of Nonsulfated and Sulfated Clycopolymers as L- and P-selectin Inhibitors. Journal of Carbohydrate Chemistry, 2011, 30, 347-360.	1.1	14
27	Single-Step Purification of Monomeric l-Selectin via Aptamer Affinity Chromatography. Sensors, 2017, 17, 226.	3.8	14
28	A Facile, One-Pot, Surfactant-Free Nanoprecipitation Method for the Preparation of Nanogels from Polyglycerol–Drug Conjugates that Can Be Freely Assembled for Combination Therapy Applications. Polymers, 2018, 10, 398.	4.5	13
29	Modular approach for theranostic polymer conjugates with activatable fluorescence: Impact of linker design on the stimuli-induced release of doxorubicin. Journal of Controlled Release, 2018, 285, 200-211.	9.9	13
30	Revealing the NIR-triggered chemotherapy therapeutic window of magnetic and thermoresponsive nanogels. Nanoscale, 2020, 12, 21635-21646.	5.6	13
31	Dendritic polymer imaging systems for the evaluation of conjugate uptake and cleavage. Nanoscale, 2015, 7, 3838-3844.	5.6	12
32	One-pot gram-scale synthesis of virucidal heparin-mimicking polymers as HSV-1 inhibitors. Chemical Communications, 2021, 57, 11948-11951.	4.1	12
33	Facile ultrasonication approach for the efficient synthesis of ethylene glycol-based thermoresponsive nanogels. RSC Advances, 2015, 5, 15407-15413.	3.6	11
34	Semi-interpenetrated, dendritic, dual-responsive nanogels with cytochrome c corona induce controlled apoptosis in HeLa cells. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 130, 115-122.	4.3	11
35	Protein corona formation and its influence on biomimetic magnetite nanoparticles. Journal of Materials Chemistry B, 2020, 8, 4870-4882.	5.8	11
36	PEGylated dendritic polyglycerol conjugate targeting NCAM-expressing neuroblastoma: Limitations and challenges. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1169-1179.	3.3	10

3

#	Article	IF	CITATIONS
37	Thermoresponsive nanogels with film-forming ability. Polymer Chemistry, 2018, 9, 1004-1011.	3.9	10
38	Effect of conducting/thermoresponsive polymer ratio on multitasking nanogels. Materials Science and Engineering C, 2021, 119, 111598.	7.3	9
39	Exploiting cyanine dye J-aggregates/monomer equilibrium in hydrophobic protein pockets for efficient multi-step phototherapy: an innovative concept for smart nanotheranostics. Nanoscale, 2021, 13, 8909-8921.	5.6	9
40	Bispecific Antibodies for Targeted Delivery of Dendritic Polyglycerol (dPG) Prodrug Conjugates. Current Cancer Drug Targets, 2016, 16, 639-649.	1.6	9
41	Significantly enhanced proteolytic activity of cyclen complexes by monoalkylation. Dalton Transactions, 2016, 45, 10500-10504.	3.3	8
42	Synthesis and functionalization of dendritic polyglycerol-based nanogels: application in T cell activation. Journal of Materials Chemistry B, 2021, 10, 96-106.	5.8	8
43	Influence of Alkyl Chains of Modified Polysuccinimideâ€Based Polycationic Polymers on Polyplex Formation and Transfection. Macromolecular Bioscience, 2019, 19, e1900117.	4.1	7
44	Prolonged activity of exenatide: Detailed comparison of Site-specific linear polyglycerol- and poly(ethylene glycol)-conjugates. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 164, 105-113.	4.3	7
45	Synthesis, Self-Assembly, and Biological Activities of Pyrimidine-Based Cationic Amphiphiles. ACS Omega, 2021, 6, 103-112.	3.5	7
46	Reducing Macro―and Microheterogeneity of Nâ€Glycans Enables the Crystal Structure of the Lectin and EGFâ€Like Domains of Human Lâ€Selectin To Be Solved at 1.9â€Ã Resolution. ChemBioChem, 2017, 18, 1338	-1345.	6
47	Chemoenzymatic Synthesis of Functional Sialyl Lewis ^X Mimetics with a Heteroaromatic Core. Chemistry - an Asian Journal, 2014, 9, 2119-2125.	3.3	5
48	Macromol. Biosci. 10/2016. Macromolecular Bioscience, 2016, 16, 1546-1546.	4.1	O
49	Analysis of the N-glycosylation of L-selectin. , 0, 2005, .		0