Mickaël Lozac'h

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1700749/publications.pdf

Version: 2024-02-01

949033 939365 29 345 11 18 citations h-index g-index papers 30 30 30 606 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Passivating antireflection coating of crystalline silicon using i/n a-Si:H/SiN trilayer. Journal of Physics and Chemistry of Solids, 2021, 156, 110127.	1.9	9
2	Double-sided TOPCon solar cells on textured wafer with ALD SiOx layer. Solar Energy Materials and Solar Cells, 2020, 207, 110357.	3.0	39
3	Tuning the Bandgap Character of Quantumâ€Confined Si–Sn Alloyed Nanocrystals. Advanced Functional Materials, 2020, 30, 1907210.	7.8	5
4	Role of silicon surface, polished ã€^100〉 and ã€^111〉 or textured, on the efficiency of doubleâ€sided TOP solar cells. Progress in Photovoltaics: Research and Applications, 2020, 28, 1001-1011.	Con 4.4	21
5	Hydrogen passivation effect on p-type poly-Si/SiOx stack for crystalline silicon solar cells. AIP Conference Proceedings, 2019, , .	0.3	2
6	Nearâ€Surface [Ga]/([In]+[Ga]) Composition in Cu(In,Ga)Se 2 Thinâ€Film Solar Cell Absorbers: An Overlooked Material Feature. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800856.	0.8	6
7	Roles of hydrogen atoms in p-type Poly-Si/SiO <i>x</i> passivation layer for crystalline silicon solar cell applications. Japanese Journal of Applied Physics, 2019, 58, 050915.	0.8	12
8	Semiconducting silicon-tin alloy nanocrystals with direct bandgap behavior for photovoltaic devices. Materials Today Energy, 2018, 7, 87-97.	2.5	15
9	Significant Carrier Extraction Enhancement at the Interface of an InN/p-GaN Heterojunction under Reverse Bias Voltage. Nanomaterials, 2018, 8, 1039.	1.9	6
10	Zero-dimensional perovskite-like (CH <inf>3</inf> NH <inf>3</inf>) <inf>3</inf> Bi <inf>2</inf> $1<$ $1<$ $1<$ $1<$ $1<$ $1<$ $1<$ $1<$		0
11	Passivation property of ultrathin SiOx:H / a-Si:H stack layers for solar cell applications. Solar Energy Materials and Solar Cells, 2018, 185, 8-15.	3.0	37
12	(Invited) Microplasmas Technologies for Engineering of Silicon Based Quantum Dot Solar Cells. ECS Transactions, 2017, 77, 1-8.	0.3	3
13	Bandgap Engineering in OHâ€Functionalized Silicon Nanocrystals: Interplay between Surface Functionalization and Quantum Confinement. Advanced Functional Materials, 2017, 27, 1701898.	7.8	15
14	Stable ultrathin surfactantâ€free surfaceâ€engineered silicon nanocrystal solar cells deposited at room temperature. Energy Science and Engineering, 2017, 5, 184-193.	1.9	11
15	Zero-dimensional methylammonium iodo bismuthate solar cells and synergistic interactions with silicon nanocrystals. Nanoscale, 2017, 9, 18759-18771.	2.8	25
16	Environmentally Friendly Processing Technology for Engineering Silicon Nanocrystals in Water with Laser Pulses. Journal of Physical Chemistry C, 2016, 120, 18822-18830.	1.5	23
17	Enhanced Conversion Efficiency of Hybrid Solar Cells by using Alloyed Silicon-Tin Nanocrystals via Quantum Confinement Effect. , 2014, , .		0
18	Fabrication of transparent conducting polymer/GaN Schottky junction for deep level defect evaluation under light irradiation. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 470-473.	0.8	8

#	Article	IF	CITATIONS
19	p-Type a-Si:H/ZnO:Al and î¼c-Si:H/ZnO:Al Thin-Film Solar Cell Structures—A Comparative Hard X-Ray Photoelectron Spectroscopy Study. IEEE Journal of Photovoltaics, 2013, 3, 483-487.	1.5	4
20	Vacancy-type defects in $\ln\langle i\rangle x \langle i\rangle Ga1\hat{a}^2\langle i\rangle x \langle i\rangle N$ grown on GaN templates probed using monoenergetic positron beams. Journal of Applied Physics, 2013, 114, .	1.1	15
21	Determination of the surface band bending in In _{<i>x</i>} Ga _{1â^'<i>x</i>} N films by hard x-ray photoemission spectroscopy. Science and Technology of Advanced Materials, 2013, 14, 015007.	2.8	11
22	Point defects introduced by InN alloying into InxGa1â^'xN probed using a monoenergetic positron beam. Journal of Applied Physics, 2013, 113, 123502.	1.1	7
23	The silicon/zinc oxide interface in amorphous silicon-based thin-film solar cells: Understanding an empirically optimized contact. Applied Physics Letters, 2013, 103, .	1.5	12
24	Study of Defect Levels in the Band Gap for a Thick InGaN Film. Japanese Journal of Applied Physics, 2012, 51, 121001.	0.8	6
25	Study of Defect Levels in the Band Gap for a Thick InGaN Film. Japanese Journal of Applied Physics, 2012, 51, 121001.	0.8	12
26	Photocapacitance spectroscopy study of deep-level defects in freestanding n-GaN substrates using transparent conductive polymer Schottky contacts. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	0.6	6
27	Deep-Level Characterization of Free-Standing HVPE-grown GaN Substrates Using Transparent Conductive Polyaniline Schottky Contacts. Materials Research Society Symposia Proceedings, 2011, 1309, 97.	0.1	O
28	Valence band structure of III-V nitride films characterized by hard X-ray photoelectron spectroscopy. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1903-1905.	0.8	6
29	Phase Separation Resulting from Mg Doping in p-InGaN Film Grown on GaN/Sapphire Template. Applied Physics Express, 2010, 3, 111004.	1.1	29