Andres de Blas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1700482/publications.pdf

Version: 2024-02-01

109

all docs

109 3,420 36 52
papers citations h-index g-index

109

docs citations

109 2546
times ranked citing authors

#	Article	IF	Citations
1	A different approach: highly encapsulating macrocycles being used as organic tectons in the building of CPs. CrystEngComm, 2021, 23, 453-464.	1.3	2
2	"F <i>ind</i> Y <i>our</i> P <i>ersonal</i> E <i>lements</i> ― An Engaging Approach to Introducing Chemistry to Secondary School Students. Journal of Chemical Education, 2021, 98, 2012-2016.	1.1	1
3	Ditopic binuclear copper(II) complexes for DNA cleavage. Journal of Inorganic Biochemistry, 2020, 205, 110995.	1.5	6
4	Further Approaches in the Design of Antitumor Agents with Response to Cell Resistance: Looking toward Aza Crown Ether-dtc Complexes. Inorganic Chemistry, 2020, 59, 15120-15134.	1.9	7
5	Recognition of AMP, ADP and ATP through Cooperative Binding by Cu(II) and Zn(II) Complexes Containing Urea and/or Phenylboronic—Acid Moieties. Molecules, 2018, 23, 479.	1.7	16
6	Ditopic receptors containing urea groups for solvent extraction of Cu(<scp>ii</scp>) salts. Dalton Transactions, 2017, 46, 3192-3206.	1.6	16
7	Water exchange rates and mechanisms in tetrahedral [Be(H ₂ O) ₄] ²⁺ and [Li(H ₂ O) ₄] ⁺ complexes using DFT methods and clusterâ€continuum models. International lournal of Ouantum Chemistry. 2016. 116. 1388-1396.	1.0	5
8	Complexation of Ln ³⁺ lons with Cyclam Dipicolinates: A Small Bridge that Makes Huge Differences in Structure, Equilibrium, and Kinetic Properties. Inorganic Chemistry, 2016, 55, 2227-2239.	1.9	26
9	Solvent Extraction Separation of Trivalent Americium from Curium and the Lanthanides. Solvent Extraction and Ion Exchange, 2015, 33, 329-345.	0.8	37
10	Stabilizing Divalent Europium in Aqueous Solution Using Size-Discrimination and Electrostatic Effects. Inorganic Chemistry, 2015, 54, 4940-4952.	1.9	39
11	Stable Mn ²⁺ , Cu ²⁺ and Ln ³⁺ complexes with cyclen-based ligands functionalized with picolinate pendant arms. Dalton Transactions, 2015, 44, 5017-5031.		55
	Turicaorianizea vian produnate por anno 1900 de la companya de la	1.6	
12	Mono-, Bi-, and Trinuclear Bis-Hydrated Mn ²⁺ Complexes as Potential MRI Contrast Agents. Inorganic Chemistry, 2015, 54, 9576-9587.	1.6	40
12 13	Mono-, Bi-, and Trinuclear Bis-Hydrated Mn ²⁺ Complexes as Potential MRI Contrast Agents.		
	Mono-, Bi-, and Trinuclear Bis-Hydrated Mn ²⁺ Complexes as Potential MRI Contrast Agents. Inorganic Chemistry, 2015, 54, 9576-9587. Lanthanide(III) Complexes with a Reinforced Cyclam Ligand Show Unprecedented Kinetic Inertness.	1.9	40
13	Mono-, Bi-, and Trinuclear Bis-Hydrated Mn ²⁺ Complexes as Potential MRI Contrast Agents. Inorganic Chemistry, 2015, 54, 9576-9587. Lanthanide(III) Complexes with a Reinforced Cyclam Ligand Show Unprecedented Kinetic Inertness. Journal of the American Chemical Society, 2014, 136, 17954-17957. High Relaxivity Mn ²⁺ â€Based MRI Contrast Agents. Chemistry - A European Journal, 2014, 20,	1.9 6.6	40 53
13 14	Mono-, Bi-, and Trinuclear Bis-Hydrated Mn ²⁺ Complexes as Potential MRI Contrast Agents. Inorganic Chemistry, 2015, 54, 9576-9587. Lanthanide(III) Complexes with a Reinforced Cyclam Ligand Show Unprecedented Kinetic Inertness. Journal of the American Chemical Society, 2014, 136, 17954-17957. High Relaxivity Mn ²⁺ â€Based MRI Contrast Agents. Chemistry - A European Journal, 2014, 20, 17300-17305. "Cinderella―elements: Strategies to increase the stability of group 1 complexes by tailoring crown	1.9 6.6 1.7	40 53 25
13 14 15	Mono-, Bi-, and Trinuclear Bis-Hydrated Mn ²⁺ Complexes as Potential MRI Contrast Agents. Inorganic Chemistry, 2015, 54, 9576-9587. Lanthanide(III) Complexes with a Reinforced Cyclam Ligand Show Unprecedented Kinetic Inertness. Journal of the American Chemical Society, 2014, 136, 17954-17957. High Relaxivity Mn ²⁺ â∈Based MRI Contrast Agents. Chemistry - A European Journal, 2014, 20, 17300-17305. â∈ccinderellaâ∈elements: Strategies to increase the stability of group 1 complexes by tailoring crown macrocycles. Inorganica Chimica Acta, 2014, 417, 155-162. Reasons behind the Relative Abundances of Heptacoordinate Complexes along the Late First-Row	1.9 6.6 1.7	40 53 25

#	Article	IF	Citations
19	Understanding Stability Trends along the Lanthanide Series. Chemistry - A European Journal, 2014, 20, 3974-3981.	1.7	68
20	Highly Stable Complexes of Divalent Metal Ions (Mg ²⁺ , Ca ²⁺ ,) Tj ETQq0 0 0 rgBT /Ove Containing a Picolinate Pendant. European Journal of Inorganic Chemistry, 2014, 2014, 6165-6173.	erlock 10 T 1.0	f 50 707 Td 14
21	Selfâ€Aggregated Dinuclear Lanthanide(III) Complexes as Potential Bimodal Probes for Magnetic Resonance and Optical Imaging. Chemistry - A European Journal, 2013, 19, 11696-11706.	1.7	19
22	Ln2M complexes (M = Ru, Re) derived from a bismacrocyclic ligand containing a 4,4′-dimethyl-2,2′-bipyridyl bridging unit. Dalton Transactions, 2013, 42, 3667.	1.6	23
23	Lanthanide Complexes Based on a Diazapyridinophane Platform Containing Picolinate Pendants. Inorganic Chemistry, 2012, 51, 10893-10903.	1.9	33
24	Lanthanide(III) Complexes with Ligands Derived from a Cyclen Framework Containing Pyridinecarboxylate Pendants. The Effect of Steric Hindrance on the Hydration Number. Inorganic Chemistry, 2012, 51, 2509-2521.	1.9	63
25	Hyperfine Coupling Constants on Innerâ€6phere Water Molecules of Gd ^{III} â€Based MRI Contrast Agents. ChemPhysChem, 2012, 13, 3640-3650.	1.0	80
26	Density functional dependence of molecular geometries in lanthanide(III) complexes relevant to bioanalytical and biomedical applications. Computational and Theoretical Chemistry, 2012, 999, 93-104.	1.1	54
27	Solution Structure of Ln(III) Complexes with Macrocyclic Ligands Through Theoretical Evaluation of ¹ H NMR Contact Shifts. Inorganic Chemistry, 2012, 51, 13419-13429.	1.9	41
28	Definition of an Intramolecular Euâ€toâ€Eu Energy Transfer within a Discrete [Eu ₂ L] Complex in Solution. Chemistry - A European Journal, 2012, 18, 8163-8173.	1.7	39
29	Solid state and solution structures of alkaline-earth complexes with lariat ethers containing aniline and benzimidazole pendants. Polyhedron, 2012, 31, 402-412.	1.0	4
30	Macrocyclic Receptor Showing Extremely High Sr(II)/Ca(II) and Pb(II)/Ca(II) Selectivities with Potential Application in Chelation Treatment of Metal Intoxication. Inorganic Chemistry, 2011, 50, 3772-3784.	1.9	60
31	Lanthanide dota-like Complexes Containing a Picolinate Pendant: Structural Entry for the Design of Ln ^{III} -Based Luminescent Probes. Inorganic Chemistry, 2011, 50, 4125-4141.	1.9	76
32	Positively Charged Lanthanide Complexes with Cyclen-Based Ligands: Synthesis, Solid-State and Solution Structure, and Fluoride Interaction. Inorganic Chemistry, 2011, 50, 12508-12521.	1.9	64
33	The effect of ring size variation on the structure and stability of lanthanide(<scp>iii</scp>) complexes with crown ethers containing picolinate pendants. Dalton Transactions, 2011, 40, 384-392.	1.6	29
34	Applications of Density Functional Theory (DFT) to Investigate the Structural, Spectroscopic and Magnetic Properties of Lanthanide(III) Complexes. Current Inorganic Chemistry, 2011, 1, 91-116.	0.2	51
35	A merged experimental and theoretical conformational study on alkaline-earth complexes with lariat ethers derived from 4,13-diaza-18-crown-6. Inorganica Chimica Acta, 2011, 370, 270-278.	1.2	10
36	Macrocyclic Receptor Showing Improved Pb ^{II} /Zn ^{II} and Pb ^{II} /Ca ^{II} Selectivities. European Journal of Inorganic Chemistry, 2010, 2010, 2495-2503.	1.0	16

#	Article	IF	CITATIONS
37	Structure and Dynamics of Lanthanide(III) Complexes with an N-Alkylated do3a Ligand (H3do3a =) Tj ETQq1 1	0.784314 rg	gBT /Overloc 30
38	Journal of Inorganic Chemistry, 2010, 2010, 3586-3595. Lead(II) Complexes of Lateral Macrobicyclic Receptors That Incorporate a Crown Moiety and a Pyridine Head Unit. European Journal of Inorganic Chemistry, 2010, 2010, 5027-5034.	1.0	10
39	Towards Selective Recognition of Sialic Acid Through Simultaneous Binding to Its <i>cis</i> â€Diol and Carboxylate Functions. European Journal of Organic Chemistry, 2010, 2010, 3237-3248.	1.2	28
40	Binuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes with Schiff-bases derived from crown ether platforms: Rare examples of ether oxygen atoms bridging metal centers. Polyhedron, 2010, 29, 2269-2277.	1.0	7
41	An NMR and DFT Investigation on the Conformational Properties of Lanthanide(III) 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetate Analogues Containing Methylenephosphonate Pendant Arms. Inorganic Chemistry, 2010, 49, 4370-4382.	1.9	52
42	Molecular Recognition of Sialic Acid by Lanthanide(III) Complexes through Cooperative Two-Site Binding. Inorganic Chemistry, 2010, 49, 4212-4223.	1.9	33
43	Anion Coordination Effect on the Nuclearity of Coll, Nill, Cull, and ZnllComplexes with a Benzimidazole Pendant-Armed Crown. European Journal of Inorganic Chemistry, 2009, 2009, 400-411.	1.0	13
44	Macrocyclic Receptor Exhibiting Unprecedented Selectivity for Light Lanthanides. Journal of the American Chemical Society, 2009, 131, 3331-3341.	6.6	128
45	Selective Chelation of Cd(II) and Pb(II) versus Ca(II) and Zn(II) by Using Octadentate Ligands Containing Pyridinecarboxylate and Pyridyl Pendants. Inorganic Chemistry, 2009, 48, 10976-10987.	1.9	21
46	Eight-Coordinate Zn(II), Cd(II), and Pb(II) Complexes Based on a 1,7-Diaza-12-crown-4 Platform Endowed with a Remarkable Selectivity over Ca(II). Inorganic Chemistry, 2009, 48, 11821-11831.	1.9	34
47	Stability, Water Exchange, and Anion Binding Studies on Lanthanide(III) Complexes with a Macrocyclic Ligand Based on 1,7-Diaza-12-crown-4: Extremely Fast Water Exchange on the Gd ³⁺ Complex. Inorganic Chemistry, 2009, 48, 8878-8889.	1.9	54
48	Protonated Macrobicyclic Hosts Containing Pyridine Head Units for Anion Recognition. Chemistry - A European Journal, 2008, 14, 5829-5838.	1.7	21
49	Conformational study of lanthanide(III) complexes of N-(2-salicylaldiminatobenzyl)-1-aza-18-crown-6 by using X-ray and ab initio methods. Polyhedron, 2008, 27, 1415-1422.	1.0	6
50	Lanthanide Complexes Based on a 1,7-Diaza-12-crown-4 Platform Containing Picolinate Pendants: A New Structural Entry for the Design of Magnetic Resonance Imaging Contrast Agents. Inorganic Chemistry, 2008, 47, 7840-7851.	1.9	83
51	Zn(ii), Cd(ii) and Pb(ii) complexation with pyridinecarboxylate containing ligands. Dalton Transactions, 2008, , 5754.	1,6	62
52	Seven-Coordination versus Six-Coordination in Divalent First-Row Transition-Metal Complexes Derived from 1,10-Diaza-15-crown-5. Inorganic Chemistry, 2007, 46, 8271-8282.	1.9	43
53	Effect of Protonation and Interaction with Anions on a Lead(II) Complex with a Lateral Macrobicycle Containing a Phenol Schiff-Base Spacer. European Journal of Inorganic Chemistry, 2007, 2007, 1635-1643.	1.0	17
54	Receptor versus Counterion: Capability ofN,N′-Bis(2-aminobenzyl)-diazacrowns for Giving Endo- and/or Exocyclic Coordination of ZnII. European Journal of Inorganic Chemistry, 2007, 2007, 1874-1883.	1.0	11

#	Article	IF	CITATIONS
55	Metal Ion Complementarity: Effect of Ring-Size Variation on the Conformation and Stability of Lead(II) and Cadmium(II) Complexes with Pendant-Armed Crowns. European Journal of Inorganic Chemistry, 2007, 2007, 2198-2207.	1.0	22
56	Synthesis and crystal structure of manganese(II) complexes with high-denticity ligands derived from azacrowns. Polyhedron, 2007, 26, 4141-4146.	1.0	6
57	Pyridine and phosphonate containing ligands for stable lanthanide complexation. An experimental and theoretical study to assess the solution structure. Dalton Transactions, 2006, , 5404-5415.	1.6	44
58	Lone-Pair Activity in Lead(II) Complexes with Unsymmetrical Lariat Ethers. Inorganic Chemistry, 2006, 45, 5407-5416.	1.9	52
59	Pyridine- and Phosphonate-Containing Ligands for Stable Ln Complexation. Extremely Fast Water Exchange on the GdIIIChelates. Inorganic Chemistry, 2006, 45, 8719-8728.	1.9	87
60	{4,10-Bis[2-(2-oxidobenzylideneamino-κ2N,O)benzyl]-1,7-dioxa-4,10-diazacyclododecane-κ4O1,N4,O3,N10}ytterl perchlorate acetonitrile solvate. Acta Crystallographica Section C: Crystal Structure Communications, 2006, 62, m360-m362.	bium(III) 0.4	1
61	Barium(II) thiocyanate templating Schiff-base lateral macrobicycles derived from 1,10-diaza-15-crown-5. Polyhedron, 2005, 24, 289-294.	1.0	10
62	A Schiff base lateral macrobicycle derived from 4,13-diaza-18-crown-6 in its protonated form. Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, o92-o94.	0.4	4
63	Designing binuclear transition metal complexes: a new example of the versatility of N,N′-bis(2-aminobenzyl)-4,13-diaza-18-crown-6. Dalton Transactions, 2005, , 2031.	1.6	13
64	The highest water exchange rate ever measured for a Gd(iii) chelate. Chemical Communications, 2005, , 4729.	2.2	39
65	Electronic Structure Study of Seven-Coordinate First-Row Transition Metal Complexes Derived from 1,10-Diaza-15-crown-5:Â A Successful Marriage of Theory with Experiment. Inorganic Chemistry, 2005, 44, 9704-9713.	1.9	57
66	Structural and Photophysical Properties of Lathanide(III) Complexes with a Novel Octadentate Iminophenolate Bibracchial Lariat Ether. Inorganic Chemistry, 2005, 44, 4254-4262.	1.9	41
67	Lateral Macrobicyclic Architectures:Â Toward New Lead(II) Sequestering Agents. Inorganic Chemistry, 2005, 44, 5428-5436.	1.9	23
68	Lead(II) Thiocyanate Complexes with Bibracchial Lariat Ethers:  An X-ray and DFT Study. Inorganic Chemistry, 2005, 44, 2224-2233.	1.9	68
69	Lanthanide Chelates Containing Pyridine Units with Potential Application as Contrast Agents in Magnetic Resonance Imaging. Chemistry - A European Journal, 2004, 10, 3579-3590.	1.7	107
70	Synthesis and structural characterisation of lead(II) isothiocyanate complexes with receptors derived from 1,10-diaza-15-crown-5. Polyhedron, 2003, 22, 2709-2717.	1.0	12
71	[7,13-Bis(2-aminobenzyl)-1,4,10-trioxa-7,13-diazacyclopentadecane]diisothiocyanatobarium(II). Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, m16-m17.	0.4	1
72	A barium perchlorate complex with a lateral macrobicycle derived from 1,10-diaza-15-crown-5 containing a phenol Schiff base spacer. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, m93-m94.	0.4	3

#	Article	IF	CITATIONS
73	A barium perchlorate complex with a lateral macrobicycle derived from 4,13-diaza-18-crown-6 containing a pyridine Schiff base spacer. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, m450-m451.	0.4	1
74	Templating Schiff-Base Lateral Macrobicycles:  An Experimental and Theoretical Structural Study of the Intermediates. Inorganic Chemistry, 2003, 42, 4299-4307.	1.9	33
75	A Schiff-Base Bibracchial Lariat Ether Forming a Cryptand-like Cavity for Lanthanide Ions. Inorganic Chemistry, 2003, 42, 6946-6954.	1.9	36
76	Lead(II) Complexes with Macrocyclic Receptors Derived from 4,13-Diaza-18-crown-6. Inorganic Chemistry, 2002, 41, 7170-7170.	1.9	6
77	Structural and Photophysical Properties of Heterobimetallic 4f-Zn Iminophenolate Cryptates. Inorganic Chemistry, 2002, 41, 5336-5349.	1.9	99
78	Lead(II) Complexes with Macrocyclic Receptors Derived from 4,13-Diaza-18-crown-6. Inorganic Chemistry, 2002, 41, 4337-4347.	1.9	45
79	Structural characterisation, EPR and magnetic properties of f–f and f–d lanthanide(iii) phenolic cryptates. Dalton Transactions RSC, 2002, , 4658.	2.3	54
80	Comparison of different methods for structural analysis of lanthanide-induced NMR shifts: a case of lanthanide(III) cryptates. Journal of Alloys and Compounds, 2001, 323-324, 824-827.	2.8	13
81	A Schiff-base bibracchial lariat ether selective receptor for lanthanide(III) ions. Dalton Transactions RSC, 2001, , 1699-1705.	2.3	29
82	Copper complexes with bibracchial lariat ethers: from mono- to binuclear structures. Inorganica Chimica Acta, 2001, 317, 190-198.	1,2	32
83	Synthesis and characterisation of cobalt, nickel, zinc and cadmium compounds with a pyridine-derived N3O2 macrocycle: Crystal and molecular structures of the macrocyclic ligand and Co(II), Ni(II) and Zn(II) complexes. Inorganica Chimica Acta, 2000, 300-302, 234-242.	1.2	14
84	Mono- and bimetallic lanthanide(III) phenolic cryptates obtained by template reaction: solid state structure, photophysical properties and relaxivity â€. Dalton Transactions RSC, 2000, , 611-618.	2.3	46
85	Lanthanide(III) Nitrate Complexes of Two 17 Membered N3O2-Donor Macrocycles. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1999, 35, 191-198.	1.6	20
86	The template synthesis and X-ray crystal structure of the first dinuclear lanthanide(III) iminophenolate cryptate. Chemical Communications, 1999, , 125-126.	2.2	30
87	Proton NMR, luminescence and electrochemical study of 18-membered Schiff-base macrocyclic lanthanum(III) complexes. Journal of the Chemical Society Dalton Transactions, 1999, , 1763-1772.	1.1	4
88	1H NMR in Solution and Solid State Structural Study of Lanthanide(III) Cryptates. Inorganic Chemistry, 1999, 38, 3190-3199.	1.9	82
89	Barium Templating Schiff-Base Lateral Macrobicycles. Inorganic Chemistry, 1999, 38, 1937-1944.	1.9	35
90	Lanthanide(III) complexes of two oxaazadiamine macrocyclic ligands derived from 2,6-diformylpyridine: the crystal structures of a reduced macrocyclic ligand and the corresponding diprotonated macrocycle. Inorganica Chimica Acta, 1998, 282, 42-49.	1.2	16

#	Article	IF	CITATIONS
91	Complexes of lead(II) and lanthanide(III) ions with two novel 26-membered-imine and -amine macrocycles derived from 2,6-bis(2-formylphenoxymethyl)pyridine. Inorganica Chimica Acta, 1998, 267, 55-62.	1.2	37
92	Complexes of lanthanide(III) ions with 18-membered Schiff-base macrocycles. Polyhedron, 1998, 17, 1759-1765.	1.0	9
93	Four Novel N3O4 Donor Macrocycles and their Lanthanide(III) Complexes. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1998, 53, 1445-1454.	0.3	6
94	One-Pot Synthesis of Lanthanide and Yttrium Cryptates Containing Pyridine Units. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1997, 52, 1273-1277.	0.3	4
95	Metal template synthesis of lanthanide cryptates. Crystal structure of a dysprosium cryptate. Journal of the Chemical Society Dalton Transactions, 1997, , 409-414.	1.1	29
96	Complexes of lead(II) and lanthanide(III) ions with a macrocyclic ligand containing a furan head unit. Crystal structure of a methanol inclusion compound of a novel macrocycle. Polyhedron, 1997, 16, 567-572.	1.0	24
97	Complexes of lanthanide(III) ions with macrocyclic ligands containing pyridine head units. Journal of the Chemical Society Dalton Transactions, 1996, , 1493-1497.	1.1	32
98	Complexes of lanthanide ions with a Schiff-base macrocyclic ligand derived from 2,6-diformylpyridine. Journal of the Chemical Society Dalton Transactions, 1994, , 1185-1188.	1,1	18
99	Divalent metal complexes of polydentate Schiff base ligands derived from aminothioetherimidazoles and 2,6-diacetyl- or 2,6-diformylpyridine. Inorganica Chimica Acta, 1993, 206, 47-52.	1.2	6
100	Heterobinuclear (Cu-M) complexes containing an endogenous benzimidazolate bridge. Inorganica Chimica Acta, 1993, 203, 1-3.	1.2	5
101	Electrochemical synthesis of neutral complexes with N2SO tetradentate ligands. Journal of the Chemical Society Dalton Transactions, 1993, , 265.	1.1	11
102	Amides and sulfonamides: efficient molecular padlocks for the template synthesis of azacyclam (1,3,5,8,12-pentaazacyclotetradecane) macrocycles. Journal of the Chemical Society Dalton Transactions, 1993, , 1411.	1.1	26
103	Pyridines with an appended metallocyclam subunit. Versatile building blocks to supramolecular multielectron redox systems. Inorganic Chemistry, 1993, 32, 106-113.	1.9	31
104	Novel routes to functionalized cyclam-like macrocycles. Pure and Applied Chemistry, 1993, 65, 455-459.	0.9	13
105	The electrochemical synthesis of zinc(II) complexes of 2-(2-mercaptophenyI)-imino-phenols and the crystal structure of bis{N,N′[dithiobis(ethylene)](4,6-dimethoxysalicylideneiminato)}zinc(II). Polyhedron, 1992, 11, 53-57.	1.0	27
106	The synthesis of tin(IV) complexes of 2-(2-mercaptophenyl)-imino-phenols by the electrochemical cleavage of a disulphide bond: The crystal structure of bis{2-(2-mercaptophenyl)imino-4,6-dimethoxy-phenoxy}tin(IV). Polyhedron, 1992, 11, 227-233.	1.0	38
107	The electrochemical synthesis of neutral complexes with asymmetric N2SO tetradentate schiff-base ligands. Polyhedron, 1992, 11, 2739-2745.	1.0	9
108	Template synthesis of a ferrocene-metallocyclam conjugate. Inorganica Chimica Acta, 1992, 202, 115-118.	1.2	7

#	Article	IF	CITATIONS
109	The Electrochemical Synthesis of Neutral Zinc(II) Complexes of Schiff Base Ligands: The Crystal Structure of Bis[N-(4-methylphenyl)salicylaldiminato]zinc(II). Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1988, 43, 611-615.	0.3	37