Dandan Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1700115/publications.pdf

Version: 2024-02-01

57719 95218 5,312 100 44 68 citations h-index g-index papers 102 102 102 5545 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Elevated microglial oxidative phosphorylation and phagocytosis stimulate post-stroke brain remodeling and cognitive function recovery in mice. Communications Biology, 2022, 5, 35.	2.0	33
2	NF-κB Signaling-Mediated Activation of WNK-SPAK-NKCC1 Cascade in Worsened Stroke Outcomes of Ang Il–Hypertensive Mice. Stroke, 2022, 53, 1720-1734.	1.0	5
3	Role of SPAK–NKCC1 signaling cascade in the choroid plexus blood–CSF barrier damage after stroke. Journal of Neuroinflammation, 2022, 19, 91.	3.1	15
4	Quantitative Sodium (23Na) MRI in Pediatric Gliomas: Initial Experience. Diagnostics, 2022, 12, 1223.	1.3	2
5	The Role of Metabolic Plasticity of Tumor-Associated Macrophages in Shaping the Tumor Microenvironment Immunity. Cancers, 2022, 14, 3331.	1.7	17
6	Ion channels and transporters in microglial function in physiology and brain diseases. Neurochemistry International, 2021, 142, 104925.	1.9	39
7	Activation of endothelial Wnt/ \hat{l}^2 -catenin signaling by protective astrocytes repairs BBB damage in ischemic stroke. Progress in Neurobiology, 2021, 199, 101963.	2.8	64
8	Blocking NHE1 stimulates glioma tumor immunity by restoring OXPHOS function of myeloid cells. Theranostics, 2021, 11, 1295-1309.	4.6	24
9	Cell Volume Regulation in Immune Cell Function, Activation and Survival. Cellular Physiology and Biochemistry, 2021, 55, 71-88.	1.1	1
10	Snapshot of microglial physiological functions. Neurochemistry International, 2021, 144, 104960.	1.9	12
11	Inhibition of Na+/H+ exchanger modulates microglial activation and scar formation following microelectrode implantation. Journal of Neural Engineering, 2021, 18, 045001.	1.8	8
12	Calcium/Calmodulin–Dependent Protein Kinase II in Cerebrovascular Diseases. Translational Stroke Research, 2021, 12, 513-529.	2.3	26
13	Attenuating vascular stenosis-induced astrogliosis preserves white matter integrity and cognitive function. Journal of Neuroinflammation, 2021, 18, 187.	3.1	36
14	Chitinase-3-like 1 protein complexes modulate macrophage-mediated immune suppression in glioblastoma. Journal of Clinical Investigation, 2021, 131 , .	3.9	49
15	Roles of glial ion transporters in brain diseases. Glia, 2020, 68, 472-494.	2.5	43
16	Modulation of brain cation-Clâ^' cotransport via the SPAK kinase inhibitor ZT-1a. Nature Communications, 2020, 11, 78.	5.8	69
17	Blockade of Cell Volume Regulatory Protein NKCC1 Increases TMZ-Induced Glioma Apoptosis and Reduces Astrogliosis. Molecular Cancer Therapeutics, 2020, 19, 1550-1561.	1.9	22
18	Targeted disruption of Kv2.1-VAPA association provides neuroprotection against ischemic stroke in mice by declustering Kv2.1 channels. Science Advances, 2020, 6 , .	4.7	21

#	Article	IF	CITATIONS
19	Role of NKCC1 Activity in Glioma K+ Homeostasis and Cell Growth: New Insights With the Bumetanide-Derivative STS66. Frontiers in Physiology, 2020, 11, 911.	1.3	13
20	WNK-SPAK/OSR1-CCC signaling in ischemic brain damage. , 2020, , 431-461.		0
21	Ischemic Injury-Induced CaMKIIδ and CaMKIIγ Confer Neuroprotection Through the NF-κB Signaling Pathway. Molecular Neurobiology, 2019, 56, 2123-2136.	1.9	28
22	The WNK-SPAK/OSR1 Kinases and the Cation-Chloride Cotransporters as Therapeutic Targets for Neurological Diseases., 2019, 10, 626.		35
23	A Novel Na ⁺ -K ⁺ -Cl ^{â^²} Cotransporter 1 Inhibitor STS66* Reduces Brain Damage in Mice After Ischemic Stroke. Stroke, 2019, 50, 1021-1025.	1.0	37
24	TMIC-19. H+ EXTRUSION PROTEIN NA/H EXCHANGER IN METABOLIC POLARIZATION OF GLIOMA-ASSOCIATED MICROGLIA/MACROPHAGES AND TUMOR IMMUNITY. Neuro-Oncology, 2019, 21, vi251-vi251.	0.6	0
25	CSIG-01. NA-K-CL COTRANSPORTER PROTEIN IN THE PATHOGENESIS OF LOW-GRADE GLIOMAS. Neuro-Oncology, 2019, 21, vi44-vi44.	0.6	0
26	Antisecretory Factor–Mediated Inhibition of Cell Volume Dynamics Produces Antitumor Activity in Glioblastoma. Molecular Cancer Research, 2018, 16, 777-790.	1.5	16
27	Synthetic analogues of the montanine-type alkaloids with activity against apoptosis-resistant cancer cells. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 589-593.	1.0	19
28	Reactive Astrocytes in Glioblastoma Multiforme. Molecular Neurobiology, 2018, 55, 6927-6938.	1.9	83
29	Effects of DHA on Hippocampal Autophagy and Lysosome Function After Traumatic Brain Injury. Molecular Neurobiology, 2018, 55, 2454-2470.	1.9	46
30	Cerebral Hypoperfusion and Other Shared Brain Pathologies in Ischemic Stroke and Alzheimer's Disease. Translational Stroke Research, 2018, 9, 238-250.	2.3	40
31	Selective knockout of astrocytic Na ⁺ /H ⁺ exchanger isoform 1 reduces astrogliosis, BBB damage, infarction, and improves neurological function after ischemic stroke. Glia, 2018, 66, 126-144.	2.5	74
32	Temporal Lobe Epilepsy, Stroke, and Traumatic Brain Injury: Mechanisms of Hyperpolarized, Depolarized, and Flow-Through Ion Channels Utilized as Tri-Coordinate Biomarkers of Electrophysiologic Dysfunction. OBM Neurobiology, 2018, 2, 1-1.	0.2	10
33	Blockade of Na/H exchanger stimulates glioma tumor immunogenicity and enhances combinatorial TMZ and anti-PD-1 therapy. Cell Death and Disease, 2018, 9, 1010.	2.7	47
34	Elevated Na/H exchanger 1 (SLC9A1) emerges as a marker for tumorigenesis and prognosis in gliomas. Journal of Experimental and Clinical Cancer Research, 2018, 37, 255.	3.5	45
35	Selective role of Na ⁺ /H ⁺ exchanger in <i>Cx3cr1⁺</i> microglial activation, white matter demyelination, and postâ€stroke function recovery. Glia, 2018, 66, 2279-2298.	2.5	43
36	Effects of novel NKCC1 inhibitors on reducing brain damage and neurological deficits after ischemic stroke in mice. FASEB Journal, 2018, 32, 824.2.	0.2	0

#	Article	IF	Citations
37	Deletion of the WNK3-SPAK kinase complex in mice improves radiographic and clinical outcomes in malignant cerebral edema after ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 550-563.	2.4	31
38	Targeting a Potassium Channel/Syntaxin Interaction Ameliorates Cell Death in Ischemic Stroke. Journal of Neuroscience, 2017, 37, 5648-5658.	1.7	33
39	Inhibition of Na $+$ -K $+$ -2Cl \hat{a}^{*} cotransporter attenuates blood-brain-barrier disruption in a mouse model of traumatic brain injury. Neurochemistry International, 2017, 111, 23-31.	1.9	47
40	WNK-Cab39-NKCC1 signaling increases the susceptibility to ischemic brain damage in hypertensive rats. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2780-2794.	2.4	23
41	ER stress and impaired autophagy flux in neuronal degeneration and brain injury. Ageing Research Reviews, 2017, 34, 3-14.	5.0	152
42	EXTH-23. ANTISECRETORY FACTOR-MEDIATED LOWERING OF INTERSTITIAL FLUID PRESSURE PRODUCES ANTI-TUMOR ACTIVITY IN GLIOBLASTOMA. Neuro-Oncology, 2017, 19, vi77-vi77.	0.6	0
43	Emerging roles of Na+/H+ exchangers in epilepsy and developmental brain disorders. Progress in Neurobiology, 2016, 138-140, 19-35.	2.8	58
44	Glial Na ⁺ â€dependent ion transporters in pathophysiological conditions. Glia, 2016, 64, 1677-1697.	2.5	43
45	Functional kinomics establishes a critical node of volume-sensitive cation-Clâ-' cotransporter regulation in the mammalian brain. Scientific Reports, 2016, 6, 35986.	1.6	38
46	Peripheral motor neuropathy is associated with defective kinase regulation of the KCC3 cotransporter. Science Signaling, 2016, 9, ra77.	1.6	46
47	Glioma-mediated microglial activation promotes glioma proliferation and migration: roles of Na ⁺ /H ⁺ exchanger isoform 1. Carcinogenesis, 2016, 37, 839-851.	1.3	54
48	Regulated phosphorylation of the K-Cl cotransporter KCC3 is a molecular switch of intracellular potassium content and cell volume homeostasis. Frontiers in Cellular Neuroscience, 2015, 9, 255.	1.8	27
49	ATPS-63OSMOTIC SWELLING REGULATES TUMOR GROWTH AND DRUG UPTAKE IN HUMAN GLIOBLASTOMA. Neuro-Oncology, 2015, 17, v32.1-v32.	0.6	0
50	Administration of DHA Reduces Endoplasmic Reticulum Stress-Associated Inflammation and Alters Microglial or Macrophage Activation in Traumatic Brain Injury. ASN Neuro, 2015, 7, 175909141561896.	1.5	79
51	Na+/H+ exchanger in the regulation of platelet activation and paradoxical effects of cariporide. Experimental Neurology, 2015, 272, 11-16.	2.0	22
52	K-Cl cotransporters, cell volume homeostasis, and neurological disease. Trends in Molecular Medicine, 2015, 21, 513-523.	3.5	102
53	GABAergic regulation of cerebellar NG2 cell development is altered in perinatal white matter injury. Nature Neuroscience, 2015, 18, 674-682.	7.1	167
54	Inhibition of WNK3 Kinase Signaling Reduces Brain Damage and Accelerates Neurological Recovery After Stroke. Stroke, 2015, 46, 1956-1965.	1.0	78

#	Article	IF	Citations
55	Generation of WNK1 knockout cell lines by CRISPR/Cas-mediated genome editing. American Journal of Physiology - Renal Physiology, 2015, 308, F366-F376.	1.3	35
56	GABA receptors in brain development, function, and injury. Metabolic Brain Disease, 2015, 30, 367-379.	1.4	215
57	Ion Transporters in Brain Tumors. Current Medicinal Chemistry, 2015, 22, 1171-1181.	1.2	38
58	Pharmacological inhibition of cation-chloride cotransporters for neurological diseases. Neural Regeneration Research, 2015, 10, 1924.	1.6	2
59	Sustained Na+/H+ Exchanger Activation Promotes Gliotransmitter Release from Reactive Hippocampal Astrocytes following Oxygen-Glucose Deprivation. PLoS ONE, 2014, 9, e84294.	1.1	30
60	Docosahexaenoic Acid Reduces ER Stress and Abnormal Protein Accumulation and Improves Neuronal Function Following Traumatic Brain Injury. Journal of Neuroscience, 2014, 34, 3743-3755.	1.7	103
61	WNK1-OSR1 kinase-mediated phospho-activation of Na+-K+-2Cl- cotransporter facilitates glioma migration. Molecular Cancer, 2014, 13, 31.	7.9	72
62	Dysregulation of Diverse Ion Transport Pathways Controlling Cell Volume Homoestasis Contribute to Neuroglial Cell Injury Following Ischemic Stroke. Translational Stroke Research, 2014, 5, 1-2.	2.3	9
63	Proton-sensitive cation channels and ion exchangers in ischemic brain injury: New therapeutic targets for stroke?. Progress in Neurobiology, 2014, 115, 189-209.	2.8	98
64	Upregulation of NHE1 protein expression enables glioblastoma cells to escape TMZ-mediated toxicity via increased H ⁺ extrusion, cell migration and survival. Carcinogenesis, 2014, 35, 2014-2024.	1.3	77
65	ER Stress and Effects of DHA as an ER Stress Inhibitor. Translational Stroke Research, 2013, 4, 635-642.	2.3	49
66	The Role of Na+/H+ Exchanger Isoform 1 in Inflammatory Responses: Maintaining H+ Homeostasis of Immune Cells. Advances in Experimental Medicine and Biology, 2013, 961, 411-418.	0.8	28
67	Intracellular pH reduction prevents excitotoxic and ischemic neuronal death by inhibiting NADPH oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4362-8.	3.3	65
68	Stimulation of Na+/H+ Exchanger Isoform 1 Promotes Microglial Migration. PLoS ONE, 2013, 8, e74201.	1.1	23
69	Inhibition of Na $<$ sup $>+sup>+sup>+sup>-2Cl<sup>Â-sup>Cotransporter isoform 1 Accelerates Temozolomidemediated Apoptosis in Glioblastoma Cancer Cells. Cellular Physiology and Biochemistry, 2012, 30, 33-48.$	1.1	54
70	DHA inhibits ER Ca ²⁺ release and ER stress in astrocytes following <i>in vitro</i> ischemia. Journal of Neurochemistry, 2012, 120, 622-630.	2.1	48
71	Inhibition of Na ⁺ /H ⁺ Exchanger Isoform 1 Is Neuroprotective in Neonatal Hypoxic Ischemic Brain Injury. Antioxidants and Redox Signaling, 2011, 14, 1803-1813.	2.5	46
72	Role of sodium/hydrogen exchanger isoform 1 in microglial activation and proinflammatory responses in ischemic brains. Journal of Neurochemistry, 2011, 119, 124-135.	2.1	59

#	Article	IF	Citations
73	Chronic Neurological Deficits in Mice after Perinatal Hypoxia and Ischemia Correlate with Hemispheric Tissue Loss and White Matter Injury Detected by MRI. Developmental Neuroscience, 2011, 33, 270-279.	1.0	48
74	Inhibiting the Na H exchanger reduces reperfusion injury a small animal MRI study. Frontiers in Bioscience - Elite, 2011, E3, 81-88.	0.9	18
75	p90 ^{RSK} activation contributes to cerebral ischemic damage via phosphorylation of Na ⁺ H ⁺ exchanger isoform 1. Journal of Neurochemistry, 2010, 114, 1476-1486.	2.1	22
76	Activation of Microglia Depends on Na ⁺ /H ⁺ Exchange-Mediated H ⁺ Homeostasis. Journal of Neuroscience, 2010, 30, 15210-15220.	1.7	82
77	Excessive Na+/H+ Exchange in Disruption of Dendritic Na+ and Ca2+ Homeostasis and Mitochondrial Dysfunction following in Vitro Ischemia. Journal of Biological Chemistry, 2010, 285, 35155-35168.	1.6	15
78	Molecular Mechanisms of Ischemic Cerebral Edema: Role of Electroneutral Ion Transport. Physiology, 2009, 24, 257-265.	1.6	185
79	Gene inactivation of Na ⁺ /H ⁺ exchanger isoform 1 attenuates apoptosis and mitochondrial damage following transient focal cerebral ischemia. European Journal of Neuroscience, 2008, 28, 51-61.	1.2	40
80	ERK1/2-p90RSK-mediated Phosphorylation of Na+/H+ Exchanger Isoform 1. Journal of Biological Chemistry, 2007, 282, 28274-28284.	1.6	49
81	Physiology and Pathophysiology of Na+/H+ Exchange Isoform 1 in the Central Nervous System. Current Neurovascular Research, 2007, 4, 205-215.	0.4	47
82	Role of Na+-K+-Clâ^' cotransport and Na+/Ca2+ exchange in mitochondrial dysfunction in astrocytes following in vitro ischemia. American Journal of Physiology - Cell Physiology, 2007, 292, C1113-C1122.	2.1	60
83	AMPA-mediated excitotoxicity in oligodendrocytes: role for Na+-K+-Clâ°co-transport and reversal of Na+/Ca2+exchanger. Journal of Neurochemistry, 2007, 102, 1783-1795.	2.1	48
84	Stimulation of astrocyte Na+/H+ exchange activity in response to in vitro ischemia depends in part on activation of ERK1/2. American Journal of Physiology - Cell Physiology, 2005, 289, C934-C945.	2.1	41
85	Decreased Neuronal Death in Na+/H+ Exchanger Isoform 1-Null Mice after In Vitro and In Vivo Ischemia. Journal of Neuroscience, 2005, 25, 11256-11268.	1.7	110
86	The role of Na–K–Cl co–transporter in cerebral ischemia. Neurological Research, 2005, 27, 280-286.	0.6	111
87	Na+-Dependent Chloride Transporter (NKCC1)-Null Mice Exhibit Less Gray and White Matter Damage after Focal Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 54-66.	2.4	131
88	Na-K-Cl Cotransporter-Mediated Intracellular Na+ Accumulation Affects Ca2+ Signaling in Astrocytes in an In Vitro Ischemic Model. Journal of Neuroscience, 2004, 24, 9585-9597.	1.7	124
89	Increased tolerance to oxygen and glucose deprivation in astrocytes from Na+/H+ exchanger isoform 1 null mice. American Journal of Physiology - Cell Physiology, 2004, 287, C12-C21.	2.1	117
90	Inhibition of Na+–K+–Clâ^' cotransporter during focal cerebral ischemia decreases edema and neuronal damage. Brain Research, 2003, 961, 22-31.	1.1	125

#	Article	IF	CITATIONS
91	GABA-Mediated Trophic Effect on Oligodendrocytes Requires Na-K-2Cl Cotransport Activity. Journal of Neurophysiology, 2003, 90, 1257-1265.	0.9	61
92	Na-K-Cl Cotransporter Contributes to Glutamate-Mediated Excitotoxicity. Journal of Neuroscience, 2003, 23, 5061-5068.	1.7	117
93	Contribution of Na ⁺ -K ⁺ -Cl ^{â^'} cotransporter to high-[K ⁺] _o - induced swelling and EAA release in astrocytes. American Journal of Physiology - Cell Physiology, 2002, 282, C1136-C1146.	2.1	132
94	Astrocytes from Na ⁺ -K ⁺ -Cl ^{â^'} cotransporter-null mice exhibit absence of swelling and decrease in EAA release. American Journal of Physiology - Cell Physiology, 2002, 282, C1147-C1160.	2.1	162
95	Na+-K+-Clâ^' Cotransporter in Rat Focal Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 711-721.	2.4	103
96	Expression of Na+-K+-Clâ^' cotransporter in rat brain during development and its localization in mature astrocytes. Brain Research, 2001, 911, 43-55.	1.1	90
97	Na ⁺ -K ⁺ -2Cl ^{â^'} Cotransporter in Immature Cortical Neurons: A Role in Intracellular Cl ^{â^'} Regulation. Journal of Neurophysiology, 1999, 81, 1939-1948.	0.9	102
98	Ischemiaâ€Induced Changes in Cerebral Mitochondrial Free Fatty Acids, Phospholipids, and Respiration in the Rat. Journal of Neurochemistry, 1994, 62, 1921-1928.	2.1	73
99	Effect of the Plateletâ€Activating Factor Antagonist BN 50739 and Its Diluents on Mitochondrial Respiration and Membrane Lipids During and Following Cerebral Ischemia. Journal of Neurochemistry, 1994, 62, 1929-1938.	2.1	22
100	The Na+/H+ Exchanger-1 as a New Molecular Target in Stroke Interventions. , 0, , .		1