Chinglin Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1699724/publications.pdf

Version: 2024-02-01

56 papers 1,603 citations

331670 21 h-index 289244 40 g-index

57 all docs

57 docs citations

57 times ranked

2586 citing authors

#	Article	IF	CITATIONS
1	Low thermal conductivity and enhanced thermoelectric performance of nanostructured Al-doped ZnTe. Ceramics International, 2016, 42, 1070-1076.	4.8	20
2	Mott-Kondo insulator behavior in the iron oxychalcogenides. Physical Review B, 2015, 92, .	3.2	21
3	In-situ/operando soft x-ray spectroscopy characterization of interfacial phenomena in energy materials and devices. , 2015, , .		1
4	Disorder-induced Room Temperature Ferromagnetism in Glassy Chromites. Scientific Reports, 2015, 4, 4686.	3.3	12
5	Developing soft X-ray spectroscopy for in situ characterization of nanocatalysts in catalytic reactions. Journal of Electron Spectroscopy and Related Phenomena, 2014, 197, 118-123.	1.7	8
6	Characterization of gasochromic vanadium oxides films by X-ray absorption spectroscopy. Thin Solid Films, 2013, 544, 461-465.	1.8	25
7	X-ray absorption spectroscopy studies of Ca2.9Ln0.1Co4O9+ $\hat{\Gamma}$ (Ln=Ca, Dy, Ho, Er and Lu). Journal of Alloys and Compounds, 2012, 529, 8-11.	5.5	3
8	Electronic structure study of ordering and interfacial interaction in graphene/Cu composites. Carbon, 2012, 50, 5316-5322.	10.3	32
9	Interfacial interaction of gas molecules and single-walled carbon nanotubes. Applied Physics Letters, 2012, 100, .	3.3	10
10	X-Ray spectra and electronic correlations of FeSe1–xTex. Physical Chemistry Chemical Physics, 2011, 13, 15666.	2.8	24
11	X-ray absorption spectroscopy investigation of the electronic structure of superconducting FeSe _x single crystals. Europhysics Letters, 2011, 93, 47003.	2.0	19
12	Electronic Structure of PrFeAsO _{1â~δ} : An Investigation Using X-ray Absorption and Emission Spectroscopy. Journal of Physics: Conference Series, 2011, 273, 012092.	0.4	2
13	Electron Enrichment in 3d Transition Metal Oxide Hetero-Nanostructures. Nano Letters, 2011, 11, 3855-3861.	9.1	74
14	Electron delocalization in cyanide-bridged coordination polymer electrodes for Li-ion batteries studied by soft x-ray absorption spectroscopy. Physical Review B, 2011, 84, .	3.2	38
15	Role of 3d electrons in the rapid suppression of superconductivity in the dilute V doped spinel superconductor LiTi ₂ O ₄ . Superconductor Science and Technology, 2011, 24, 115007.	3.5	18
16	Electronic structure study of Li+/OHâ^' modified single-walled carbon nanotubes by soft-x-ray absorption and resonant emission spectroscopy. Applied Physics Letters, 2010, 96, 213112.	3.3	17
17	Room Temperature Ferromagnetism and Fast Ultraviolet Photoresponse of Inkjet-Printed Mn-Doped ZnO Thin Films. IEEE Transactions on Magnetics, 2010, 46, 2152-2155.	2.1	23
18	Low energy electronic spectroscopy of an infinite-layer cuprate: A resonant inelastic X-ray scattering study of CaCuO2. Physica C: Superconductivity and Its Applications, 2010, 470, 187-192.	1.2	1

#	Article	IF	Citations
19	Understanding the scattering mechanism of single-walled carbon nanotube based gas sensors. Carbon, 2010, 48, 1970-1976.	10.3	13
20	Thickness-Dependent Electronic Structure of Intermetallic CeCo2 Nanothin Films Studied by X-ray Absorption Spectroscopy. Langmuir, 2009, 25, 7568-7572.	3.5	3
21	Effect of Mn doping on the physical properties of misfit-layered Ca ₃ Co ₄ O _{9+Î} . Journal Physics D: Applied Physics, 2009, 42, 135418.	2.8	31
22	A Self-Templated Route to Hollow Silica Microspheres. Journal of Physical Chemistry C, 2009, 113, 3168-3175.	3.1	243
23	Sizeâ€Controlled <i>Exâ€nihilo</i> Ferromagnetism in Capped CdSe Quantum Dots. Advanced Materials, 2008, 20, 1656-1660.	21.0	57
24	Electronic structure of CeCo2 thin films studied by X-ray absorption spectroscopy. Physica B: Condensed Matter, 2008, 403, 854-855.	2.7	0
25	Electronic structure of multiferroic <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:m< td=""><td>າກ>&2/mm</td><td>l:n82> </td></mml:m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	າກ> &2/ mm	l:n 82>
26	Effect of surface treatments on the electronic properties of ultra-nanocrystalline diamond films. Diamond and Related Materials, 2008, 17, 1150-1153.	3.9	15
27	Effect of Mn Substitution for Multiferroic BiFeO ₃ Probed by High-Resolution Soft-X-ray Spectroscopy. Japanese Journal of Applied Physics, 2008, 47, 7570.	1.5	38
28	Investigation of the valence states of Fe and Co in Fe1 \hat{a}^{*} xCoxOy(0 <x<1) 20,="" 2008,="" 255236.<="" absorption="" by="" condensed="" films="" journal="" matter,="" of="" physics="" spectroscopy.="" td="" thin="" x-ray=""><td>1.8</td><td>8</td></x<1)>	1.8	8
29	Probing quantum confinement of single-walled carbon nanotubes by resonant soft-x-ray emission spectroscopy. Applied Physics Letters, 2008, 93, .	3.3	12
30	Electronic Structures of Hexagonal Manganites HoMnO3 Studied by X-ray Absorption Near-edge Structure. AIP Conference Proceedings, 2007, , .	0.4	1
31	X-ray spectroscopic study of the charge state and local ordering of room-temperature ferromagnetic Mn-doped ZnO. Journal of Physics Condensed Matter, 2007, 19, 172202.	1.8	31
32	X-ray absorption spectroscopy of Mg doped Fe3O4 thin films. Journal of Alloys and Compounds, 2007, 442, 259-261.	5.5	7
33	Effects of Ru substitution for Mn on La0.7Sr0.3MnO3 perovskites. Journal of Applied Physics, 2007, 102, 023915.	2.5	51
34	Electronic Structure of Cobalt Nanocrystals Suspended in Liquid. Nano Letters, 2007, 7, 1919-1922.	9.1	83
35	Magnetic and electronic properties of CeCo ₂ studied by synchrotron radiation. Physica Status Solidi (B): Basic Research, 2007, 244, 4526-4529.	1.5	3
36	Variation of electronic structures of CeAl2 thin films with thickness studied by X-ray absorption near-edge structure spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2006, 152, 1-5.	1.7	4

3

#	Article	IF	CITATIONS
37	Size dependence of the electronic structure of copper nanoclusters in SiC matrix. Chemical Physics Letters, 2006, 422, 543-546.	2.6	11
38	Electronic structure and surface structure of Cu2S nanorods from polarization dependent X-ray absorption spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2006, 151, 64-70.	1.7	4
39	X-ray absorption and emission spectroscopy of ZnO nanoparticle and highly oriented ZnO microrod arrays. Microelectronics Journal, 2006, 37, 686-689.	2.0	34
40	Electronic structure of CeAl2 thin films studied by X-ray absorption spectroscopy. Applied Surface Science, 2006, 252, 5372-5375.	6.1	0
41	Electronic and magnetic properties of CeAl2 nanoparticles. Journal of Magnetism and Magnetic Materials, 2006, 304, e22-e24.	2.3	3
42	Comparison of electronic structures of orthorhombic and hexagonal manganites studied by X-ray absorption spectroscopy. Solid State Communications, 2005, 134, 821-826.	1.9	14
43	Comparison of the electronic structures of AlN nanotips grown on p- and n-type Si substrates. Journal of Physics Condensed Matter, 2005, 17, 7523-7530.	1.8	10
44	Electronic structure of phospho-olivines LixFePO4 ($x=0,1$) from soft-x-ray-absorption and -emission spectroscopies. Journal of Chemical Physics, 2005, 123, 184717.	3.0	79
45	Electronic structure of nanostructured ZnO from x-ray absorption and emission spectroscopy and the local density approximation. Physical Review B, 2004, 70, .	3.2	180
46	X-ray absorption studies of RRhAl (R=La and Ce) compounds. Physica B: Condensed Matter, 2003, 325, 235-239.	2.7	5
47	Size-Induced Transition from Magnetic Ordering to Kondo Behavior in (Ce,Al) Compounds. Physical Review Letters, 2000, 84, 4990-4993.	7.8	40
48	Structure and electronic states of single-crystal Fe1â^'xNixOy (0⩽x⩽1) thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 1630-1634.	2.1	4
49	Fe ₃ O ₄ /MgO Superlattices Grown on MgO(OOI) and Fe/MgO(001) by Molecular Beam Epitaxy. Materials Research Society Symposia Proceedings, 1997, 474, 271.	0.1	5
50	Effect of Sm valence changes on photoemission spectra. Physical Review B, 1988, 37, 6605-6610.	3.2	13
51	X-ray spectroscopy ofEuBa2(Cu1â^'yZny)3O7â^'x: Suppression of superconductivity. Physical Review B, 1988, 38, 2930-2933.	3.2	22
52	Correlation between electronic states of O, Cu, and Ba in several highâ€√csuperconductors. Journal of Applied Physics, 1988, 63, 4193-4195.	2.5	1
53	Insufficiency of O and Cu holes for oxide superconductivity: X-ray absorption spectroscopy. Physical Review B, 1988, 38, 6588-6595.	3.2	31
54	Electron spectroscopy of high-temperature superconductors. AIP Conference Proceedings, 1988, , .	0.4	1

#	Article	IF	CITATIONS
55	High-temperature superconductivity in the presence of OÂ2pâ^CuÂ3dholes: A spectroscopic study. Physical Review B, 1987, 36, 3895-3898.	3.2	113
56	Electronic Structure Study of Nanostructured Transition Metal Oxides Using Soft X-Ray Spectroscopy., 0,, 123-142.		3