
Patryk Oleszczuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1699394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review on nano zerovalent iron (nZVI): From synthesis to environmental applications. Chemical Engineering Journal, 2016, 287, 618-632.	12.7	699
2	Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: A critical review. Journal of Hazardous Materials, 2019, 373, 820-834.	12.4	307
3	Effects of Titanium Dioxide Nanoparticles Exposure on Human Health—a Review. Biological Trace Element Research, 2020, 193, 118-129.	3.5	303
4	Biochar for composting improvement and contaminants reduction. A review. Bioresource Technology, 2017, 246, 193-202.	9.6	282
5	Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water. Bioresource Technology, 2015, 196, 540-549.	9.6	254
6	Adsorption and Desorption of Oxytetracycline and Carbamazepine by Multiwalled Carbon Nanotubes. Environmental Science & Technology, 2009, 43, 9167-9173.	10.0	221
7	Effect of sewage sludge properties on the biochar characteristic. Journal of Analytical and Applied Pyrolysis, 2015, 112, 201-213.	5.5	220
8	Biochar properties regarding to contaminants content and ecotoxicological assessment. Journal of Hazardous Materials, 2013, 260, 375-382.	12.4	217
9	Engineered biochar – A sustainable solution for the removal of antibiotics from water. Chemical Engineering Journal, 2021, 405, 126926.	12.7	212
10	Advances and future directions of biochar characterization methods and applications. Critical Reviews in Environmental Science and Technology, 2017, 47, 2275-2330.	12.8	194
11	Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge. Bioresource Technology, 2012, 111, 84-91.	9.6	186
12	Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma, 2004, 118, 221-232.	5.1	164
13	The conversion of sewage sludge into biochar reduces polycyclic aromatic hydrocarbon content and ecotoxicity but increases trace metal content. Biomass and Bioenergy, 2015, 75, 235-244.	5.7	162
14	THE DARK SIDE OF BLACK GOLD: Ecotoxicological aspects of biochar and biochar-amended soils. Journal of Hazardous Materials, 2021, 403, 123833.	12.4	147
15	Effect of pesticides on microorganisms, enzymatic activity and plant in biochar-amended soil. Geoderma, 2014, 214-215, 10-18.	5.1	132
16	PET-microplastics as a vector for heavy metals in a simulated plant rhizosphere zone. Science of the Total Environment, 2020, 744, 140984.	8.0	123
17	Sorption and desorption of Cr(VI) ions from water by biochars in different environmental conditions. Environmental Science and Pollution Research, 2015, 22, 5985-5994.	5.3	122
18	Effects of microplastics on the terrestrial environment: A critical review. Environmental Research, 2022, 209, 112734.	7.5	112

#	Article	IF	CITATIONS
19	Activated biochars reduce the exposure of polycyclic aromatic hydrocarbons in industrially contaminated soils. Chemical Engineering Journal, 2017, 310, 33-40.	12.7	105
20	Influence of soil type and environmental conditions on ZnO, TiO2 and Ni nanoparticles phytotoxicity. Chemosphere, 2013, 92, 91-99.	8.2	103
21	Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil. Chemosphere, 2016, 146, 272-279.	8.2	103
22	Phytotoxicity of municipal sewage sludge composts related to physico-chemical properties, PAHs and heavy metals. Ecotoxicology and Environmental Safety, 2008, 69, 496-505.	6.0	102
23	Characterization of nanoparticles of biochars from different biomass. Journal of Analytical and Applied Pyrolysis, 2016, 121, 165-172.	5.5	100
24	Persistence of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge-amended soil. Chemosphere, 2006, 65, 1616-1626.	8.2	99
25	Characterization of biochars produced from residues from biogas production. Journal of Analytical and Applied Pyrolysis, 2015, 115, 157-165.	5.5	99
26	Effect of biochar activation by different methods on toxicity of soil contaminated by industrial activity. Ecotoxicology and Environmental Safety, 2017, 136, 119-125.	6.0	99
27	Evaluation of sewage sludge and slow pyrolyzed sewage sludge-derived biochar for adsorption of phenanthrene and pyrene. Bioresource Technology, 2015, 192, 618-626.	9.6	97
28	Toxicity of biochars after polycyclic aromatic hydrocarbons removal by thermal treatment. Ecological Engineering, 2015, 75, 79-85.	3.6	89
29	Short-Term Effect of the Soil Amendments Activated Carbon, Biochar, and Ferric Oxyhydroxide on Bacteria and Invertebrates. Environmental Science & Technology, 2013, 47, 8674-8683.	10.0	84
30	The effect of inorganic nanoparticles (ZnO, Cr2O3, CuO and Ni) and their bulk counterparts on enzyme activities in different soils. Geoderma, 2014, 232-234, 528-537.	5.1	84
31	Application of solid-phase extraction to determination of polycyclic aromatic hydrocarbons in sewage sludge extracts. Journal of Hazardous Materials, 2004, 113, 237-245.	12.4	79
32	Chemical and ecotoxicological evaluation of biochar produced from residues of biogas production. Journal of Hazardous Materials, 2016, 318, 417-424.	12.4	78
33	Toxicity of combined mixtures of nanoparticles to plants. Journal of Hazardous Materials, 2017, 331, 200-209.	12.4	77
34	Application of biochar to sewage sludge reduces toxicity and improve organisms growth in sewage sludge-amended soil in long term field experiment. Science of the Total Environment, 2018, 625, 8-15.	8.0	75
35	Effect of biochars, activated carbon and multiwalled carbon nanotubes on phytotoxicity of sediment contaminated by inorganic and organic pollutants. Ecological Engineering, 2013, 60, 50-59.	3.6	73
36	Engineered biochars from organic wastes for the adsorption of diclofenac, naproxen and triclosan from water systems. Journal of Cleaner Production, 2021, 288, 125686.	9.3	73

#	Article	IF	CITATIONS
37	Effect of pyrolysis temperatures on freely dissolved polycyclic aromatic hydrocarbon (PAH) concentrations in sewage sludge-derived biochars. Chemosphere, 2016, 153, 68-74.	8.2	69
38	Synthesis of biochar from residues after biogas production with respect to cadmium and nickel removal from wastewater. Journal of Environmental Management, 2017, 201, 268-276.	7.8	68
39	Stabilization of sewage sludge by different biochars towards reducing freely dissolved polycyclic aromatic hydrocarbons (PAHs) content. Bioresource Technology, 2014, 156, 139-145.	9.6	66
40	Long-term effect of ZnO and CuO nanoparticles on soil microbial community in different types of soil. Geoderma, 2019, 352, 204-212.	5.1	66
41	Addition of biochar to sewage sludge decreases freely dissolved PAHs content and toxicity of sewage sludge-amended soil. Environmental Pollution, 2016, 218, 242-251.	7.5	62
42	Comparison of sewage sludge toxicity to plants and invertebrates in three different soils. Chemosphere, 2011, 83, 502-509.	8.2	61
43	Microbiological, biochemical and ecotoxicological evaluation of soils in the area of biochar production in relation to polycyclic aromatic hydrocarbon content. Geoderma, 2014, 213, 502-511.	5.1	61
44	Biochar and engineered biochar as slow- and controlled-release fertilizers. Journal of Cleaner Production, 2022, 339, 130685.	9.3	58
45	The toxicity to plants of the sewage sludges containing multiwalled carbon nanotubes. Journal of Hazardous Materials, 2011, 186, 436-442.	12.4	57
46	Formation of persistent free radicals in biochar derived from rice straw based on a detailed analysis of pyrolysis kinetics. Science of the Total Environment, 2020, 715, 136575.	8.0	57
47	The addition of biochar as a sustainable strategy for the remediation of PAH–contaminated sediments. Chemosphere, 2021, 263, 128274.	8.2	57
48	Application of different carrying gases and ratio between sewage sludge and willow for engineered (smart) biochar production. Journal of CO2 Utilization, 2019, 29, 20-28.	6.8	56
49	Changes of polycyclic aromatic hydrocarbons during composting of sewage sludges with chosen physico-chemical properties and PAHs content. Chemosphere, 2007, 67, 582-591.	8.2	55
50	COVID-19 discarded disposable gloves as a source and a vector of pollutants in the environment. Journal of Hazardous Materials, 2021, 417, 125938.	12.4	53
51	Application of three methods used for the evaluation of polycyclic aromatic hydrocarbons (PAHs) bioaccessibility for sewage sludge composting. Bioresource Technology, 2009, 100, 413-420.	9.6	52
52	Influence of anionic, cationic and nonionic surfactants on adsorption and desorption of oxytetracycline by ultrasonically treated and non-treated multiwalled carbon nanotubes. Chemosphere, 2011, 85, 1312-1317.	8.2	52
53	Vanadium oxide activates persulfate for degradation of polycyclic aromatic hydrocarbons in aqueous system. Chemical Engineering Journal, 2019, 364, 79-88.	12.7	52
54	Adsorption capacity of phenanthrene and pyrene to engineered carbon-based adsorbents produced from sewage sludge or sewage sludge-biomass mixture in various gaseous conditions. Bioresource Technology, 2019, 280, 421-429.	9.6	52

#	Article	IF	CITATIONS
55	Co-pyrolysis of sewage sludge and biomass in carbon dioxide as a carrier gas affects the total and leachable metals in biochars. Journal of Hazardous Materials, 2020, 400, 123144.	12.4	52
56	Ecotoxicological evaluation of selected pharmaceuticals to Vibrio fischeri and Daphnia magna before and after photooxidation process. Ecotoxicology and Environmental Safety, 2014, 104, 247-253.	6.0	51
57	A field study of bioavailable polycyclic aromatic hydrocarbons (PAHs) in sewage sludge and biochar amended soils. Journal of Hazardous Materials, 2018, 349, 27-34.	12.4	50
58	Changes of total and freely dissolved polycyclic aromatic hydrocarbons and toxicity of biochars treated with various aging processes. Environmental Pollution, 2018, 237, 65-73.	7.5	50
59	Investigating impact of physicochemical properties of microplastics on human health: A short bibliometric analysis and review. Chemosphere, 2022, 289, 133146.	8.2	50
60	Polycyclic Aromatic Hydrocarbons Content in Shoots and Leaves of Willow (Salix viminalis) Cultivated on the Sewage Sludge-Amended Soil. Water, Air, and Soil Pollution, 2005, 168, 91-111.	2.4	49
61	Effect of steam activated biochar application to industrially contaminated soils on bioavailability of polycyclic aromatic hydrocarbons and ecotoxicity of soils. Science of the Total Environment, 2016, 566-567, 1023-1031.	8.0	49
62	Adsorption and desorption of heavy metals by the sewage sludge and biochar-amended soil. Environmental Geochemistry and Health, 2019, 41, 1663-1674.	3.4	48
63	Modification of ordered mesoporous carbon for removal of environmental contaminants from aqueous phase: A review. Journal of Hazardous Materials, 2021, 418, 126266.	12.4	48
64	Polycyclic aromatic hydrocarbons (PAHs) persistence, bioavailability and toxicity in sewage sludge- or sewage sludge-derived biochar-amended soil. Science of the Total Environment, 2020, 747, 141123.	8.0	46
65	The Phytotoxicity Changes of Sewage Sludge-Amended Soils. Water, Air, and Soil Pollution, 2012, 223, 4937-4948.	2.4	45
66	Effect of co-application of nano-zero valent iron and biochar on the total and freely dissolved polycyclic aromatic hydrocarbons removal and toxicity of contaminated soils. Chemosphere, 2017, 168, 1467-1476.	8.2	45
67	Environmental behavior of engineered biochars and their aging processes in soil. Biochar, 2019, 1, 339-351.	12.6	45
68	Effect of biochar addition to sewage sludge on cadmium, copper and lead speciation in sewage sludge-amended soil. Chemosphere, 2020, 239, 124719.	8.2	45
69	Influence of activated carbon and biochar on phytotoxicity of air-dried sewage sludges to Lepidium sativum. Ecotoxicology and Environmental Safety, 2012, 80, 321-326.	6.0	43
70	Surfactants decrease the toxicity of ZnO, TiO2 and Ni nanoparticles to Daphnia magna. Ecotoxicology, 2015, 24, 1923-1932.	2.4	43
71	Sequential extraction of nickel and zinc in sewage sludge- or biochar/sewage sludge-amended soil. Science of the Total Environment, 2018, 636, 927-935.	8.0	43
72	Biochar alters chemical and microbial properties of microplastic-contaminated soil. Environmental Research, 2022, 209, 112807.	7.5	43

#	Article	IF	CITATIONS
73	Effect of activated carbon and biochars on the bioavailability of polycyclic aromatic hydrocarbons in different industrially contaminated soils. Environmental Science and Pollution Research, 2016, 23, 11058-11068.	5.3	42
74	The toxicity of composts from sewage sludges evaluated by the direct contact tests phytotoxkit and ostracodtoxkit. Waste Management, 2008, 28, 1645-1653.	7.4	41
75	Sorption of diclofenac and naproxen onto MWCNT in model wastewater treated by H2O2 and/or UV. Chemosphere, 2016, 149, 272-278.	8.2	41
76	Biochars with low polycyclic aromatic hydrocarbon concentrations achievable by pyrolysis under high carrier gas flows irrespective of oxygen content or feedstock. Journal of Analytical and Applied Pyrolysis, 2016, 122, 365-369.	5.5	40
77	Engineered biochar modified with iron as a new adsorbent for treatment of water contaminated by selenium. Journal of Saudi Chemical Society, 2020, 24, 824-834.	5.2	40
78	Carbon dioxide as a carrier gas and mixed feedstock pyrolysis decreased toxicity of sewage sludge biochar. Science of the Total Environment, 2020, 723, 137796.	8.0	39
79	Carbon adsorbents from waste ion-exchange resins. Carbon, 2005, 43, 1143-1150.	10.3	38
80	Application of a battery of biotests for the determination of leachate toxicity to bacteria and invertebrates from sewage sludge-amended soil. Environmental Science and Pollution Research, 2013, 20, 3435-3446.	5.3	37
81	Carbon dioxide as a carrier gas and biomass addition decrease the total and bioavailable polycyclic aromatic hydrocarbons in biochar produced from sewage sludge. Chemosphere, 2019, 228, 26-34.	8.2	36
82	Sustainable biochar-based soil fertilizers and amendments as a new trend in biochar research. Science of the Total Environment, 2022, 816, 151588.	8.0	36
83	MWCNT–TiO 2 –SiO 2 nanocomposites possessing the photocatalytic activity in UVA and UVC. Applied Catalysis B: Environmental, 2015, 162, 564-572.	20.2	35
84	Bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in historically contaminated soils after lab incubation with sewage sludge-derived biochars. Chemosphere, 2016, 163, 480-489.	8.2	35
85	Combined toxicity of endosulfan and phenanthrene mixtures and induced molecular changes in adult Zebrafish (Danio rerio). Chemosphere, 2018, 194, 30-41.	8.2	35
86	Plasmid binding to metal oxide nanoparticles inhibited lateral transfer of antibiotic resistance genes. Environmental Science: Nano, 2019, 6, 1310-1322.	4.3	34
87	Microplastics in agricultural soils from a semi-arid region and their transport by wind erosion. Environmental Research, 2022, 212, 113213.	7.5	33
88	Effect of Natural Aging of Biochar on Soil Enzymatic Activity and Physicochemical Properties in Long-Term Field Experiment. Agronomy, 2020, 10, 449.	3.0	32
89	The convertion of sewage sludge to biochar as a sustainable tool of PAHs exposure reduction during agricultural utilization of sewage sludges. Journal of Hazardous Materials, 2020, 392, 122416.	12.4	32
90	The concentration and changes in freely dissolved polycyclic aromatic hydrocarbons in biochar-amended soil. Environmental Pollution, 2016, 214, 748-755.	7.5	31

#	Article	IF	CITATIONS
91	Bioaccessibility of polycyclic aromatic hydrocarbons in activated carbon or biochar amended vegetated (Salix viminalis) soil. Environmental Pollution, 2017, 227, 406-413.	7.5	31
92	The Effects of Biochar Amendment on Soil Fertility. SSSA Special Publication Series, 0, , 123-144.	0.2	30
93	Influence of different bulking agents on the disappearance of polycyclic aromatic hydrocarbons (PAHs) during sewage sludge composting. Water, Air, and Soil Pollution, 2006, 175, 15-32.	2.4	29
94	Investigation of potentially bioavailable and sequestrated forms of polycyclic aromatic hydrocarbons during sewage sludge composting. Chemosphere, 2007, 70, 288-297.	8.2	29
95	Biochar production increases the polycyclic aromatic hydrocarbon content in surrounding soils and potential cancer risk. Environmental Science and Pollution Research, 2014, 21, 3646-3652.	5.3	29
96	Advanced oxidation (H2O2 and/or UV) of functionalized carbon nanotubes (CNT-OH and CNT-COOH) and its influence on the stabilization of CNTs in water and tannic acid solution. Environmental Pollution, 2015, 200, 161-167.	7.5	29
97	Co-application of sewage sludge with biochar increases disappearance of polycyclic aromatic hydrocarbons from fertilized soil in long term field experiment. Science of the Total Environment, 2017, 599-600, 854-862.	8.0	29
98	The influence of ZnO and TiO ₂ nanoparticles on the toxicity of sewage sludges. Environmental Sciences: Processes and Impacts, 2013, 15, 296-306.	3.5	27
99	Ecotoxicological assessment of residues from different biogas production plants used as fertilizer for soil. Journal of Hazardous Materials, 2015, 298, 195-202.	12.4	27
100	Effect of biochar application on the physical properties of Haplic Podzol. Soil and Tillage Research, 2017, 174, 92-103.	5.6	27
101	Influence of Soil Fertilization by Sewage Sludge on the Content of Polycyclic Aromatic Hydrocarbons (PAHs) in Crops. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40, 2085-2103.	1.7	25
102	<i>Heterocypris incongruens</i> as a tool to estimate sewage sludge toxicity. Environmental Toxicology and Chemistry, 2008, 27, 864-872.	4.3	25
103	Attenuation of phenanthrene and pyrene adsorption by sewage sludge-derived biochar in biochar-amended soils. Environmental Science and Pollution Research, 2016, 23, 21822-21832.	5.3	25
104	Active carbons from waste biochars. Journal of Thermal Analysis and Calorimetry, 2017, 130, 15-24.	3.6	25
105	Impact of ZnO and ZnS nanoparticles in sewage sludge-amended soil on bacteria, plant and invertebrates. Chemosphere, 2019, 237, 124359.	8.2	25
106	Distribution and transport of microplastics in groundwater (Shiraz aquifer, southwest Iran). Water Research, 2022, 220, 118622.	11.3	25
107	From waste to fertilizer: Nutrient recovery from wastewater by pristine and engineered biochars. Chemosphere, 2022, 306, 135310.	8.2	25
108	Phytotoxicity of nanoparticles—problems with bioassay choosing and sample preparation. Environmental Science and Pollution Research, 2014, 21, 10215-10224.	5.3	24

#	Article	IF	CITATIONS
109	Coupling of desorption of phenanthrene from marine sediments and biodegradation of the sediment washing solution in a novel biochar immobilized–cell reactor. Environmental Pollution, 2022, 308, 119621.	7.5	24
110	Carbon–mineral adsorbents prepared by pyrolysis of waste materials in the presence of tetrachloromethane. Journal of Colloid and Interface Science, 2005, 284, 39-47.	9.4	23
111	Sorption of phenanthrene by sewage sludge during composting in relation to potentially bioavailable contaminant content. Journal of Hazardous Materials, 2009, 161, 1330-1337.	12.4	23
112	An ecotoxicological evaluation of soil fertilized with biogas residues or mining waste. Environmental Science and Pollution Research, 2015, 22, 7833-7842.	5.3	23
113	Effect of various biochar rates on winter rye yield and the concentration of available nutrients in the soil. Plant, Soil and Environment, 2016, 62, 483-489.	2.2	22
114	Simultaneous adsorption of Cu(II) ions and poly(acrylic acid) on the hybrid carbon-mineral nanocomposites with metallic elements. Journal of Hazardous Materials, 2021, 412, 125138.	12.4	22
115	Combined effect of nano-CuO and nano-ZnO in plant-related system: From bioavailability in soil to transcriptional regulation of metal homeostasis in barley. Journal of Hazardous Materials, 2021, 416, 126230.	12.4	22
116	Sewage sludge and solid residues from biogas production derived biochar as an effective bio-waste adsorbent of fulvic acids from water or wastewater. Chemosphere, 2021, 278, 130447.	8.2	22
117	Microplastics captured by snowfall: A study in Northern Iran. Science of the Total Environment, 2022, 822, 153451.	8.0	22
118	Effect of activated carbon or biochars on toxicity of different soils contaminated by mixture of native polycyclic aromatic hydrocarbons and heavy metals. Environmental Toxicology and Chemistry, 2016, 35, 1321-1328.	4.3	21
119	Ecotoxicological assessment of sewage sludge-derived biochars-amended soil. Environmental Pollution, 2021, 275, 116484.	7.5	21
120	Simultaneous removal of toxic Pb(II) ions, poly(acrylic acid) and Triton X-100 from their mixed solution using engineered biochars obtained from horsetail herb precursor – Impact of post-activation treatment. Separation and Purification Technology, 2021, 276, 119297.	7.9	21
121	EFFECT OF BIOMASS ADDITION BEFORE SEWAGE SLUDGE PYROLYSIS ON THE PERSISTENCE AND BIOAVAILABILITY OF POLYCYCLIC AROMATIC HYDROCARBONS IN BIOCHAR-AMENDED SOIL. Chemical Engineering Journal, 2022, 429, 132143.	12.7	21
122	Testing of different plants to determine influence of physico–chemical properties and contaminants content on municipal sewage sludges phytotoxicity. Environmental Toxicology, 2010, 25, 38-47.	4.0	20
123	Adsorption and desorption of antiviral drugs (ritonavir and lopinavir) on sewage sludges as a potential environmental risk. Journal of Hazardous Materials, 2022, 425, 127901.	12.4	20
124	Generation Mechanism of Persistent Free Radicals in Lignocellulose-Derived Biochar: Roles of Reducible Carbonyls. Environmental Science & Technology, 2022, 56, 10638-10645.	10.0	20
125	Manufactured Nanomaterials: The Connection Between Environmental Fate and Toxicity. Critical Reviews in Environmental Science and Technology, 2013, 43, 2581-2616.	12.8	18
126	The bioavailability and toxicity of ZnO and Ni nanoparticles and their bulk counterparts in different sediments. Journal of Soils and Sediments, 2016, 16, 1798-1808.	3.0	18

#	Article	IF	CITATIONS
127	Mechanism of aging of biochars obtained at different temperatures from sewage sludges with different composition and character. Chemosphere, 2022, 287, 132258.	8.2	18
128	Forms of polycyclic aromatic hydrocarbon in the formation of sewage sludge toxicity to Heterocypris incongruens. Science of the Total Environment, 2008, 404, 94-102.	8.0	17
129	Comparison of lead(II) ions accumulation and bioavailability on the montmorillonite and kaolinite surfaces in the presence of polyacrylamide soil flocculant. Chemosphere, 2021, 276, 130088.	8.2	17
130	Biochars ages differently depending on the feedstock used for their production: Willow- versus sewage sludge-derived biochars. Science of the Total Environment, 2021, 789, 147458.	8.0	17
131	Changes in the Content of Polycyclic Aromatic Hydrocarbons (PAHs) in Light Soil Fertilized with Sewage Sludge. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2003, 38, 793-805.	1.7	16
132	Characterization of Polish Sewage Sludges with Respect to Fertility and Suitability for Land Application. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2006, 41, 1197-1215.	1.7	16
133	The evaluation of sewage sludge and compost toxicity to <i>Heterocypris incongruens</i> in relation to inorganic and organic contaminants content. Environmental Toxicology, 2007, 22, 587-596.	4.0	15
134	Influence of Agricultural Land Use and Management on the Contents of Polycyclic Aromatic Hydrocarbons in Selected Silty Soils. Water, Air, and Soil Pollution, 2007, 184, 195-205.	2.4	15
135	Effect of reclamation treatments on microbial activity and phytotoxicity of soil degraded by the sulphur mining industry. Environmental Pollution, 2019, 252, 1429-1438.	7.5	14
136	Combined Effects of Plant Cultivation and Sorbing Carbon Amendments on Freely Dissolved PAHs in Contaminated Soil. Environmental Science & Technology, 2019, 53, 4860-4868.	10.0	14
137	Influence of protein internal stability on its removal mechanism from aqueous solutions using eco-friendly horsetail herb-based engineered biochar. Chemical Engineering Journal, 2020, 388, 124156.	12.7	14
138	Low temperature–produced and VFA–coated biochar enhances phenanthrene adsorption and mitigates toxicity in marine sediments. Separation and Purification Technology, 2022, 296, 121414.	7.9	14
139	KINETICS OF PAHS LOSSES AND RELATIONSHIPS BETWEEN PAHS PROPERTIES AND PROPERTIES OF SOIL IN SEWAGE SLUDGE-AMENDED SOIL. Polycyclic Aromatic Compounds, 2005, 25, 245-269.	2.6	13
140	Polyaromatic Hydrocarbons in Rhizosphere Soil of Different Plants: Effect of Soil Properties, Plant Species, and Intensity of Anthropogenic Pressure. Communications in Soil Science and Plant Analysis, 2007, 38, 171-188.	1.4	13
141	Transcriptional and biochemical response of barley to co-exposure of metal-based nanoparticles. Science of the Total Environment, 2021, 782, 146883.	8.0	13
142	Cross-examination of engineered nanomaterials in crop production: Application and related implications. Journal of Hazardous Materials, 2022, 424, 127374.	12.4	13
143	The Tenax fraction of PAHs relates to effects in sewage sludges. Ecotoxicology and Environmental Safety, 2009, 72, 1320-1325.	6.0	12
144	Toxicity of Light Soil Fertilized by Sewage Sludge or Compost in Relation to PAHs Content. Water, Air, and Soil Pollution, 2010, 210, 347-356.	2.4	12

#	Article	IF	CITATIONS
145	The chronic effects of CuO and ZnO nanoparticles on Eisenia fetida in relation to the bioavailability in aged soils. Chemosphere, 2021, 266, 128982.	8.2	12
146	Water treatment by H2O2 and/or UV affects carbon nanotube (CNT) properties and fate in water and tannic acid solution. Environmental Science and Pollution Research, 2015, 22, 20198-20206.	5.3	11
147	Concentration of Polycyclic Aromatic Hydrocarbons in Sewage Sludgeâ€Amended Soil. Communications in Soil Science and Plant Analysis, 2005, 36, 1083-1097.	1.4	10
148	Ecotoxicity of sewage sludge- or sewage sludge/willow-derived biochar-amended soil. Environmental Pollution, 2022, 305, 119235.	7.5	10
149	Properties of thin polyethylene glycol layers on the surface of silica gel and pyrocarbon/silica gel. Materials Chemistry and Physics, 2001, 70, 25-37.	4.0	9
150	Effect of hydrothermal modification on the porous structure and thermal properties of carbon–silica adsorbents (carbosils). Materials Chemistry and Physics, 2003, 78, 486-494.	4.0	9
151	Degradation of Soil Environment in the Postâ€Flooding Area: Content of Polycyclic Aromatic Hydrocarbons (PAHs) and Sâ€Triazine Herbicides. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2003, 38, 799-812.	1.5	9
152	The co-occurrence of Zn-and Cu-based engineered nanoparticles in soils: The metal extractability vs. toxicity to Folsomia candida. Chemosphere, 2022, 287, 132252.	8.2	9
153	The Concentration of Mild-Extracted Polycyclic Aromatic Hydrocarbons in Sewage Sludges. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2004, 39, 2799-2815.	1.7	8
154	Content of potentially bioavailable polycyclic aromatic hydrocarbons in rhizosphere soil in relation to properties of soils. Chemical Speciation and Bioavailability, 2006, 18, 39-48.	2.0	8
155	Four Types of TiO2 Reduced the Growth of Selected Lactic Acid Bacteria Strains. Foods, 2021, 10, 939.	4.3	8
156	Application of hydroxypropyl[l²]cyclodextrin to evaluation of polycyclic aromatic hydrocarbon losses during sewage sludges composting. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 43, 10-17.	1.7	7
157	The total and freely dissolved polycyclic aromatic hydrocarbons content in residues from biogas production. Environmental Pollution, 2016, 208, 787-795.	7.5	6
158	Tenax-TA extraction as predictor for free available content of polycyclic aromatic hydrocarbons (PAHs) in composted sewage sludges. Journal of Environmental Monitoring, 2008, 10, 883.	2.1	4
159	Influence of Long-Term Soils Flooding by Distilled and Post-Sewage Water on Polycyclic Aromatic Hydrocarbons (PAHs) Changes. Water, Air, and Soil Pollution, 2007, 180, 237-248.	2.4	3
160	Changes of solid phase toxicity during sewage sludge composting in relation to bioavailability of polycyclic aromatic hydrocarbons. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2009, 44, 137-145.	1.7	3
161	Advances in agro-environmental organic contamination: An introduction to the Special Issue. Chemosphere, 2022, 287, 132071.	8.2	2
162	The content of elements and quality parameters of winter rye grain as influenced by biochar-amended soil. Zemdirbyste, 2018, 105, 11-20.	0.8	2

#	Article	IF	CITATIONS
163	Response to Comment on "Adsorption and Desorption of Oxytetracycline and Carbamazepine by Multiwalled Carbon Nanotubes― Environmental Science & Technology, 2010, 44, 4829-4829.	10.0	1