Yuwalee Unpaprom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/169939/publications.pdf

Version: 2024-02-01

69 1,290 20 31 papers citations h-index g-index

69 69 738
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Fermentation of pineapple fruit peel wastes for bioethanol production. Biomass Conversion and Biorefinery, 2019, 9, 761-765.	4.6	81
2	The optimization of oil extraction from macroalgae, Rhizoclonium sp. by chemical methods for efficient conversion into biodiesel. Fuel, 2020, 274, 117841.	6.4	78
3	Bioethanol production from sunflower stalk: application of chemical and biological pretreatments by response surface methodology (RSM). Biomass Conversion and Biorefinery, 2021, 11, 1759-1773.	4.6	75
4	Bioethanol production from the comparison between optimization of sorghum stalk and sugarcane leaf for sugar production by chemical pretreatment and enzymatic degradation. Fuel, 2020, 278, 118262.	6.4	59
5	Impact and significance of alkaline-oxidant pretreatment on the enzymatic digestibility of Sphenoclea zeylanica for bioethanol production. Bioresource Technology, 2018, 247, 125-130.	9.6	55
6	Engineering principles and process designs for phosphorus recovery as struvite: A comprehensive review. Journal of Environmental Chemical Engineering, 2021, 9, 105579.	6.7	48
7	The immobilization of yeast for fermentation of macroalgae Rhizoclonium sp. for efficient conversion into bioethanol. Biomass Conversion and Biorefinery, 2021, 11, 827-835.	4.6	43
8	Enhancement of the combustion, performance and emission characteristics of spirulina microalgae biodiesel blends using nanoparticles. Fuel, 2022, 308, 121822.	6.4	39
9	Optimization of pretreatment condition for ethanol production from Cyperus difformis by response surface methodology. 3 Biotech, 2019, 9, 218.	2.2	35
10	Integrated biomolecular and bioprocess engineering strategies for enhancing the lipid yield from microalgae. Renewable and Sustainable Energy Reviews, 2021, 148, 111270.	16.4	35
11	Microalgae cultivation in wastewater effluent from tilapia culture pond for enhanced bioethanol production. Water Science and Technology, 2021, 84, 2686-2694.	2.5	33
12	Sustainability assessment of water hyacinth with swine dung for biogas production, methane enhancement, and biofertilizer. Biomass Conversion and Biorefinery, 2021, 11, 849-860.	4.6	32
13	Performance, combustion and emission characteristics of the CI engine fueled with Botryococcus braunii microalgae with addition of TiO2 nanoparticle. Fuel, 2022, 317, 121898.	6.4	28
14	Environmental management and valorization of cultivated tobacco stalks by combined pretreatment for potential bioethanol production. Biomass Conversion and Biorefinery, 2020, , 1.	4.6	27
15	Raffinose family oligosaccharides in seed of <i>Glycine max</i> cv. Chiang Mai60 and potential source of prebiotic substances. International Journal of Food Science and Technology, 2015, 50, 1750-1756.	2.7	26
16	Impact and significance of pretreatment on the fermentable sugar production from low-grade longan fruit wastes for bioethanol production. Biomass Conversion and Biorefinery, 2022, 12, 1605-1617.	4.6	26
17	Potential improvement of biogas production from fallen teak leaves with co-digestion of microalgae. 3 Biotech, 2018, 8, 123.	2.2	25
18	Methane productivity evaluation of an invasive wetland plant, common reed. Biomass Conversion and Biorefinery, 2020, 10, 689-695.	4.6	24

#	Article	IF	CITATIONS
19	Recent advances and future prospects of electrochemical processes for microalgae harvesting. Journal of Environmental Chemical Engineering, 2021, 9, 105875.	6.7	24
20	Egg shell catalyst and chicken waste biodiesel blends for improved performance, combustion and emission characteristics. Fuel, 2021, 306, 121633.	6.4	24
21	Enhancement of hydrolysis with Trichoderma harzianum for bioethanol production of sonicated pineapple fruit peel. Fuel, 2020, 279, 118437.	6.4	23
22	Cellulosic-derived bioethanol from Limnocharis flava utilizing alkaline pretreatment. Biomass Conversion and Biorefinery, 2022, 12, 1737-1743.	4.6	22
23	Biomass generation and biodiesel production from macroalgae grown in the irrigation canal wastewater. Water Science and Technology, 2021, 84, 2695-2702.	2.5	22
24	Hydrothermal pretreatment and acid hydrolysis of coconut pulp residue for fermentable sugar production. Food and Bioproducts Processing, 2020, 122, 31-40.	3.6	21
25	Antioxidative study of polysaccharides extracted from red (Kappaphycus alvarezii), green (Kappaphycus) Tj ETQq1	1.0.78431	14 rgBT /0\ 21
26	Comparative analysis of fresh and dry free-floating aquatic plant Pistia stratiotes via chemical pretreatment for second-generation (2G) bioethanol production. Bioresource Technology Reports, 2021, 14, 100651.	2.7	21
27	Bioethanol production from corn stalk juice using <i>Saccharomyces cerevisiae</i> TISTR 5020. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2019, 41, 1615-1621.	2.3	20
28	Sustainability and application of corncob-derived biochar for removal of fluoroquinolones. Biomass Conversion and Biorefinery, 2022, 12, 913-923.	4.6	20
29	Liquid hot water extraction as a chemical-free pretreatment approach for biobutanol production from Cassia fistula pods. Fuel, 2020, 279, 118393.	6.4	18
30	Advancement of fermentable sugars from fresh elephant ear plant weed for efficient bioethanol production. Environment, Development and Sustainability, 2022, 24, 7377-7387.	5.0	18
31	Optimization of combined pre-treatments on sugarcane leaves for bioethanol production. Maejo International Journal of Energy and Environmental Communication, 2021, 1, 30-39.	0.6	16
32	Effects of substrate concentration and hydraulic retention time on hydrogen production from common reed by enriched mixed culture in continuous anaerobic bioreactor. International Journal of Hydrogen Energy, 2021, 46, 14036-14044.	7.1	15
33	A biorefinery approach for the production of bioethanol from alkaline-pretreated, enzymatically hydrolyzed Nicotiana tabacum stalks as feedstock for the bio-based industry. Biomass Conversion and Biorefinery, 2022, 12, 891-899.	4.6	14
34	Potential evaluation of biogas production through the exploitation of naturally growing freshwater macroalgae Spirogyra varians. Environment, Development and Sustainability, 0, , .	5.0	13
35	Simultaneous carbon dioxide reduction and methane generation in biogas for rural household use via anaerobic digestion of wetland grass with cow dung. Fuel, 2022, 317, 123487.	6.4	13
36	Bioethanol production from coconut pulp residue using hydrothermal and postalkaline pretreatment. International Journal of Energy Research, 2021, 45, 8140-8150.	4.5	11

#	Article	IF	CITATIONS
37	Fabrication and performance evaluation of dye-sensitized solar cell integrated with natural dye from Strobilanthes cusia under different counter-electrode materials. Applied Nanoscience (Switzerland), 2023, 13, 1073-1083.	3.1	11
38	Stimulation of natural enzymes for germination of mimosa weed seeds to enhanced bioethanol production. 3 Biotech, 2021, 11, 307.	2.2	10
39	Anthocyanin pigment-based dye-sensitized solar cells with improved pH-dependent photovoltaic properties. Sustainable Energy Technologies and Assessments, 2022, 51, 101971.	2.7	10
40	Comparative studies of the longan leaf pigment extraction as a photosensitizer for dye-sensitized solar cells' purpose. Biomass Conversion and Biorefinery, 2022, 12, 1619-1626.	4.6	9
41	Appropriateness of waste jasmine flower for bioethanol conversion with enzymatic hydrolysis: sustainable development on green fuel production. 3 Biotech, 2021, 11, 216.	2.2	9
42	Improvement of fermentable sugar for enhanced bioethanol production from Amorphophallus spp. tuber obtained from northern Thailand. Environment, Development and Sustainability, 2022, 24, 8351-8362.	5.0	9
43	Advancements of fermentable sugar yield by pretreatment and steam explosion during enzymatic saccharification of Amorphophallus sp. starchy tuber for bioethanol production. Fuel, 2022, 323, 124406.	6.4	9
44	Physical pretreatment and algal enzyme hydrolysis of dried low-grade and waste longan fruits to enhance its fermentable sugar production. Biomass Conversion and Biorefinery, 2022, 12, 1669-1677.	4.6	8
45	Development of sustainable approaches for converting the agro-weeds Ludwigia hyssopifolia to biogas production. Biomass Conversion and Biorefinery, 2020, , 1.	4.6	8
46	Sustainable valorization of water primrose with cow dung for enhanced biogas production. Biomass Conversion and Biorefinery, 2022, 12, 1647-1655.	4.6	8
47	Sustainable development of feed formulation for farmed tilapia enriched with fermented pig manure to reduce production costs. Science of the Total Environment, 2021, 801, 149614.	8.0	8
48	Grass Silage for Biogas Production. , 0, , .		7
49	Natural dyes extracted from Inthanin bok leaves as light-harvesting units for dye-sensitized solar cells. Applied Nanoscience (Switzerland), 2023, 13, 391-403.	3.1	7
50	Valorization and biorefinery of kaffir lime peels waste for antifungal activity and sustainable control of mango fruit anthracnose. Biomass Conversion and Biorefinery, 2023, 13, 10735-10749.	4.6	7
51	Membrane fouling issues in anaerobic membrane bioreactors (AnMBRs) for biogas production. Maejo International Journal of Energy and Environmental Communication, 2021, 1, 15-19.	0.6	6
52	Effects of Co-substrate Concentrations on the Anaerobic Co-Digestion of Common Reed and Cow Dung. AJARCDE Asian Journal of Applied Research for Community Development and Empowerment, 2019, 3, 28-32.	0.1	5
53	Enhanced fermentable sugar production from low grade and damaged longan fruits using cellulase with algal enzymes for bioethanol production. Emergent Life Sciences Research, 2020, 06, 26-31.	0.1	5
54	EXTRACTION OF ANTHOCYANIN PIGMENTS FROM MALABAR SPINACH FRUITS AS A POTENTIAL PHOTOSENSITIZER FOR DYE-SENSITIZED SOLAR CELL. , 2020, , 5-9.		5

#	Article	IF	Citations
55	POTENTIAL EVALUATION OF YELLOW COTTON (COCHLOSPERMUM REGIUM) PIGMENTS FOR DYE SENSITIZED SOLAR CELLS APPLICATION. , 2020, , 16-21.		5
56	Effect of hot water extraction process on schizophyllan from split gill mushroom. Biomass Conversion and Biorefinery, 2024, 14, 1017-1026.	4.6	5
57	Effect of rotary microwave drying on quality characteristics and physical properties of Kaffir lime leaf (Citrus hystrix D.C.). Biomass Conversion and Biorefinery, 2024, 14, 5601-5610.	4.6	5
58	The effect of various pretreatments conditions on the distribution of fermentable sugar from dried elephant ear plant. Fuel, 2022, 324, 124624.	6.4	5
59	Assessment of the effects of anaerobic co-digestion of water primrose and cow dung with swine manure on biogas yield and biodegradability. Biomass Conversion and Biorefinery, 2020, , $1.$	4.6	4
60	Ethanol production from corn stalk juice by Saccharomyces cerevisiae immobilized yeast using a green method. Biomass Conversion and Biorefinery, $0, 1$.	4.6	4
61	Effect of biogas sludge meal supplement in feed on growth performance molting period and production cost of giant freshwater prawn culture. Chemosphere, 2022, 301, 134638.	8.2	4
62	Influential degree of polymerization of sugar extraction on alkali pretreatment from sunflower stalk wastes by applied statistical modelling. Maejo International Journal of Energy and Environmental Communication, 2021, 1, 37-43.	0.6	3
63	Optimization of ethanol precipitation of schizophyllan from Schizophyllum commune by applied statistical modelling. Biomass Conversion and Biorefinery, 2024, 14, 2707-2719.	4.6	3
64	Muntingia calabura fruits as sources of bioactive compounds and fermentative ethanol production. Biomass Conversion and Biorefinery, 2024, 14, 4703-4714.	4.6	3
65	Processing of split gill mushroom as a biogenic material for functional food purpose. Biocatalysis and Agricultural Biotechnology, 2022, 41, 102314.	3.1	2
66	BIOMETHANE POTENTIAL OF INVASIVE AQUATIC WEED WATER PRIMROSE. , 2021, , 1-5.		1
67	THERMOCHEMICAL PRETREATMENT METHOD FOLLOWED BY ENZYME HYDROLYSIS OF TOBACCO STALKS FOR BIOETHANOL PRODUCTION., 2021,, 6-10.		0
68	IMPROVEMENT OF BIOETHANOL PRODUCTION FROM LOW GRADE AND DAMAGED LONGAN FRUITS WITH THERMAL PRETREATMENT AND DIFFERENT TYPES OF THE ENZYMATIC HYDROLYSIS. , 2020, , 6-11.		0
69	Enhancement of Fermentable Sugars Obtained from <i> Amorphophallus</i> Spp. Tuber for Bioethanol Production by Optimizing Temperature and Pretreatment Concentration. Materials Science Forum, 0, 1056, 185-190.	0.3	0