
Daniel S Read

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1699284/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	INVITED REVIEW: Molecular analysis of predation: a review of best practice for DNAâ€based approaches. Molecular Ecology, 2008, 17, 947-963.	3.9	566
2	Environmental <scp>DNA</scp> metabarcoding of lake fish communities reflects longâ€ŧerm data from established survey methods. Molecular Ecology, 2016, 25, 3101-3119.	3.9	452
3	<scp>PIPITS</scp> : an automated pipeline for analyses of fungal internal transcribed spacer sequences from the <scp>I</scp> llumina sequencing platform. Methods in Ecology and Evolution, 2015, 6, 973-980.	5.2	277
4	Catchment-scale biogeography of riverine bacterioplankton. ISME Journal, 2015, 9, 516-526.	9.8	202
5	Comparison of long-read sequencing technologies in the hybrid assembly of complex bacterial genomes. Microbial Genomics, 2019, 5, .	2.0	171
6	Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater ponds. Hydrobiologia, 2019, 826, 25-41.	2.0	151
7	The effect of anthropogenic arsenic contamination on the earthworm microbiome. Environmental Microbiology, 2015, 17, 1884-1896.	3.8	118
8	Temporal and spatial variation in distribution of fish environmental DNA in England's largest lake. Environmental DNA, 2019, 1, 26-39.	5.8	110
9	Identification and Quantification of Microplastics in Potable Water and Their Sources within Water Treatment Works in England and Wales. Environmental Science & Technology, 2020, 54, 12326-12334.	10.0	97
10	Molecular detection of predation by soil micro-arthropods on nematodes. Molecular Ecology, 2006, 15, 1963-1972.	3.9	96
11	Spatial and temporal changes in chlorophyll-a concentrations in the River Thames basin, UK: Are phosphorus concentrations beginning to limit phytoplankton biomass?. Science of the Total Environment, 2012, 426, 45-55.	8.0	96
12	Environmental DNA (eDNA) metabarcoding of pond water as a tool to survey conservation and management priority mammals. Biological Conservation, 2019, 238, 108225.	4.1	85
13	Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-ZnO with soil bacterial communities. Environmental Science and Pollution Research, 2016, 23, 4120-4128.	5.3	79
14	Impacts of climate change, land-use change and phosphorus reduction on phytoplankton in the River Thames (UK). Science of the Total Environment, 2016, 572, 1507-1519.	8.0	76
15	Online fluorescence spectroscopy for the real-time evaluation of the microbial quality of drinking water. Water Research, 2018, 137, 301-309.	11.3	76
16	The effect of filtration method on the efficiency of environmental <scp>DNA</scp> capture and quantification via metabarcoding. Molecular Ecology Resources, 2018, 18, 1102-1114.	4.8	75
17	Semi-automated analysis of microplastics in complex wastewater samples. Environmental Pollution, 2021, 268, 115841.	7.5	72
18	The impact of sequencing depth on the inferred taxonomic composition and AMR gene content of metagenomic samples. Environmental Microbiomes, 2019, 14, 7,	5.0	69

DANIEL S READ

#	Article	lF	CITATIONS
19	Identifying multiple stressor controls on phytoplankton dynamics in the River Thames (UK) using high-frequency water quality data. Science of the Total Environment, 2016, 569-570, 1489-1499.	8.0	65
20	A cost-effectiveness analysis of water security and water quality: impacts of climate and land-use change on the River Thames system. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120413.	3.4	52
21	Using Boreholes as Windows into Groundwater Ecosystems. PLoS ONE, 2013, 8, e70264.	2.5	52
22	Contrasting community assembly processes structure lotic bacteria metacommunities along the river continuum. Environmental Microbiology, 2021, 23, 484-498.	3.8	50
23	Analytical approaches to support current understanding of exposure, uptake and distributions of engineered nanoparticles by aquatic and terrestrial organisms. Ecotoxicology, 2015, 24, 239-261.	2.4	49
24	Tracing enteric pathogen contamination in sub-Saharan African groundwater. Science of the Total Environment, 2015, 538, 888-895.	8.0	48
25	Development and application of environmental DNA surveillance for the threatened crucian carp (<i>Carassius carassius</i>). Freshwater Biology, 2019, 64, 93-107.	2.4	48
26	Niche and local geography shape the pangenome of wastewater- and livestock-associated Enterobacteriaceae. Science Advances, 2021, 7, .	10.3	47
27	Toxic interactions of different silver forms with freshwater green algae and cyanobacteria and their effects on mechanistic endpoints and the production of extracellular polymeric substances. Environmental Science: Nano, 2016, 3, 396-408.	4.3	45
28	Weekly flow cytometric analysis of riverine phytoplankton to determine seasonal bloom dynamics. Environmental Sciences: Processes and Impacts, 2014, 16, 594.	3.5	42
29	Optimising sample preparation for FTIR-based microplastic analysis in wastewater and sludge samples: multiple digestions. Analytical and Bioanalytical Chemistry, 2021, 413, 3789-3799.	3.7	39
30	Impacts of phosphorus concentration and light intensity on river periphyton biomass and community structure. Hydrobiologia, 2017, 792, 315-330.	2.0	38
31	Metalloproteins and phytochelatin synthase may confer protection against zinc oxide nanoparticle induced toxicity in Caenorhabditis elegans. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2014, 160, 75-85.	2.6	35
32	Dynamic modelling of multiple phytoplankton groups in rivers with an application to the Thames river system in the UK. Environmental Modelling and Software, 2015, 74, 75-91.	4.5	35
33	Characterisation of a major phytoplankton bloom in the River Thames (UK) using flow cytometry and high performance liquid chromatography. Science of the Total Environment, 2018, 624, 366-376.	8.0	30
34	Evaluation of temperature gradient gel electrophoresis for the analysis of prey DNA within the guts of invertebrate predators. Bulletin of Entomological Research, 2006, 96, 295-304.	1.0	29
35	Nutrient and microbial water quality of the upper Ganga River, India: identification of pollution sources. Environmental Monitoring and Assessment, 2020, 192, 533.	2.7	29
36	Modelling Microplastics in the River Thames: Sources, Sinks and Policy Implications. Water (Switzerland), 2021, 13, 861.	2.7	29

DANIEL S READ

#	Article	IF	CITATIONS
37	Systematic review of wastewater surveillance of antimicrobial resistance in human populations. Environment International, 2022, 162, 107171.	10.0	29
38	Chemical fixation methods for Raman spectroscopy-based analysis of bacteria. Journal of Microbiological Methods, 2015, 109, 79-83.	1.6	27
39	Weekly water quality monitoring data for the River Thames (UK) and its major tributaries (2009–2013): the Thames Initiative research platform. Earth System Science Data, 2018, 10, 1637-1653.	9.9	25
40	Evidence for Phenotypic Plasticity among Multihost Campylobacter jejuni and C. coli Lineages, Obtained Using Ribosomal Multilocus Sequence Typing and Raman Spectroscopy. Applied and Environmental Microbiology, 2013, 79, 965-973.	3.1	24
41	Genomic network analysis of environmental and livestock F-type plasmid populations. ISME Journal, 2021, 15, 2322-2335.	9.8	24
42	In-situ fluorescence spectroscopy indicates total bacterial abundance and dissolved organic carbon. Science of the Total Environment, 2020, 738, 139419.	8.0	22
43	A genomic epidemiological study shows that prevalence of antimicrobial resistance in Enterobacterales is associated with the livestock host, as well as antimicrobial usage. Microbial Genomics, 2021, 7, .	2.0	20
44	Riparian shading controls instream spring phytoplankton and benthic algal growth. Environmental Sciences: Processes and Impacts, 2016, 18, 677-689.	3.5	18
45	Tryptophan-like fluorescence as a high-level screening tool for detecting microbial contamination in drinking water. Science of the Total Environment, 2021, 750, 141284.	8.0	16
46	Suction sampling as a significant source of error in molecular analysis of predator diets. Bulletin of Entomological Research, 2012, 102, 261-266.	1.0	15
47	Tryptophan-like and humic-like fluorophores are extracellular in groundwater: implications as real-time faecal indicators. Scientific Reports, 2020, 10, 15379.	3.3	15
48	Assessing the impact of the threatened crucian carp (<i>Carassius carassius</i>) on pond invertebrate diversity: A comparison of conventional and molecular tools. Molecular Ecology, 2021, 30, 3252-3269.	3.9	13
49	Large-scale survey of seasonal drinking water quality in Malawi using in situ tryptophan-like fluorescence and conventional water quality indicators. Science of the Total Environment, 2020, 744, 140674.	8.0	13
50	Application of eDNA metabarcoding in a fragmented lowland river: Spatial and methodological comparison of fish species composition. Environmental DNA, 2021, 3, 458-471.	5.8	13
51	In-situ fluorescence spectroscopy is a more rapid and resilient indicator of faecal contamination risk in drinking water than faecal indicator organisms. Water Research, 2021, 206, 117734.	11.3	13
52	A systematic approach to understand hydrogeochemical dynamics in large river systems: Development and application to the River Ganges (Ganga) in India. Water Research, 2022, 211, 118054.	11.3	13
53	Using dissolved organic matter fluorescence to identify the provenance of nutrients in a lowland catchment; the River Thames, England. Science of the Total Environment, 2019, 653, 1240-1252.	8.0	11
54	Assessment of the bimodality in the distribution of bacterial genome sizes. ISME Journal, 2017, 11, 821-824.	9.8	10

DANIEL S READ

#	Article	IF	CITATIONS
55	Beyond Taxonomic Identification: Integration of Ecological Responses to a Soil Bacterial 16S rRNA Gene Database. Frontiers in Microbiology, 2021, 12, 682886.	3.5	6
56	Tracing carbon and nitrogen microbial assimilation in suspended particles in freshwaters. Biogeochemistry, 2023, 164, 277-293.	3.5	5
57	Sedimentary <scp>DNA</scp> records longâ€ŧerm changes in a lake bacterial community in response to varying nutrient availability. Environmental DNA, 2022, 4, 1340-1355.	5.8	5
58	Phenotypic responses in <i>Caenorhabditis elegans</i> following chronic lowâ€level exposures to inorganic and organic compounds. Environmental Toxicology and Chemistry, 2018, 37, 920-930.	4.3	4
59	Integration of DNA extraction, metabarcoding and an informatics pipeline to underpin a national citizen science honey monitoring scheme. MethodsX, 2021, 8, 101303.	1.6	4
60	The role of rhizofiltration and allelopathy on the removal of cyanobacteria in a continuous flow system. Environmental Science and Pollution Research, 2021, 28, 27731-27741.	5.3	2
61	Gut and faecal bacterial community of the terrestrial isopod Porcellionides pruinosus: potential use for monitoring exposure scenarios. Ecotoxicology, 2021, 30, 2096-2108.	2.4	1
62	Raman-Fluorescence in Situ Hybridization. , 0, , 277-294.		1
63	Single Cell Microbial Ecophysiology with Raman-FISH. Springer Protocols, 2015, , 65-76.	0.3	0