
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1699058/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vacuum drying characteristics of eggplants. Journal of Food Engineering, 2007, 83, 422-429.	5.2	142
2	Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing–thawing treatments on its impedance characteristics. Journal of Food Engineering, 2008, 87, 274-280.	5.2	131
3	Impact of structural characteristics on starch digestibility of cooked rice. Food Chemistry, 2016, 191, 91-97.	8.2	103
4	Impact of the degree of cooking on starch digestibility of rice – An in vitro study. Food Chemistry, 2016, 191, 98-104.	8.2	87
5	Histological Structures of Cooked Rice Grain. Journal of Agricultural and Food Chemistry, 2003, 51, 7019-7023.	5.2	75
6	Evaluation of protein digestibility of fermented soybeans and changes in biochemical characteristics of digested fractions. Journal of Functional Foods, 2019, 52, 640-647.	3.4	61
7	The importance of an oral digestion step in evaluating simulated in vitro digestibility of starch from cooked rice grain. Food Research International, 2017, 94, 6-12.	6.2	59
8	Visualization of the coated layer at the surface of rice grain cooked with varying amounts of cooking water. Journal of Cereal Science, 2012, 56, 404-409.	3.7	58
9	Changes in histological tissue structure and textural characteristics of rice grain during cooking process. Food Structure, 2014, 1, 164-170.	4.5	56
10	The influence of processing conditions on catechin, caffeine and chlorophyll contents of green tea (Camelia sinensis) leaves and infusions. LWT - Food Science and Technology, 2019, 116, 108567.	5.2	53
11	Parboiling reduced the crystallinity and in vitro digestibility of non-waxy short grain rice. Food Chemistry, 2018, 257, 23-28.	8.2	50
12	Impact of food structure and cell matrix on digestibility of plant-based food. Current Opinion in Food Science, 2018, 19, 36-41.	8.0	50
13	The microstructure of starchy food modulates its digestibility. Critical Reviews in Food Science and Nutrition, 2019, 59, 3117-3128.	10.3	50
14	Impacts of processing conditions on digestive recovery of polyphenolic compounds and stability of the antioxidant activity of green tea infusion during in vitro gastrointestinal digestion. LWT - Food Science and Technology, 2018, 89, 648-656.	5.2	44
15	Changes in bioactive compounds and antioxidant activity of plant-based foods by gastrointestinal digestion: a review. Critical Reviews in Food Science and Nutrition, 2022, 62, 4684-4705.	10.3	41
16	In vitro gastrointestinal digestion of crisphead lettuce: Changes in bioactive compounds and antioxidant potential. Food Chemistry, 2020, 311, 125885.	8.2	40
17	Advanced Technique for Three-Dimensional Visualization of Compound Distributions in a Rice Kernel. Journal of Agricultural and Food Chemistry, 2001, 49, 736-740.	5.2	34
18	Microstructure and digestibility of potato strips produced by conventional frying and air-frying: An in vitro study. Food Structure, 2017, 14, 30-35.	4.5	32

#	Article	IF	CITATIONS
19	In vitro protein digestibility and biochemical characteristics of soaked, boiled and fermented soybeans. Scientific Reports, 2021, 11, 14257.	3.3	32
20	Introduction of chlorogenic acid during extrusion affects the physicochemical properties and enzymatic hydrolysis of rice flour. Food Hydrocolloids, 2021, 116, 106652.	10.7	30
21	Effect of in vitro digestion on bioactive compounds, antioxidant and antimicrobial activities of coffee (Coffea arabica L.) pulp aqueous extract. Food Chemistry, 2021, 348, 129094.	8.2	27
22	Changes in Nonwaxy <scp>J</scp> aponica Rice Grain Texturalâ€Related Properties during Cooking. Journal of Food Quality, 2014, 37, 177-184.	2.6	26
23	Comparative study of conventional steam cooking and microwave cooking on cooked pigmented rice texture and their phenolic antioxidant. Food Science and Nutrition, 2020, 8, 965-972.	3.4	24
24	In vitro examination of starch digestibility and changes in antioxidant activities of selected cooked pigmented rice. Food Bioscience, 2018, 23, 129-136.	4.4	23
25	Influence of postharvest drying conditions on resistant starch content and quality of non-waxy long-grain rice (<i>Oryza sativa</i> L.). Drying Technology, 2018, 36, 952-964.	3.1	21
26	Starch digestibility of various Japanese commercial noodles made from different starch sources. Food Chemistry, 2019, 283, 390-396.	8.2	20
27	Fabrication of Spray-Dried Microcapsules Containing Noni Juice Using Blends of Maltodextrin and Gum Acacia: Physicochemical Properties of Powders and Bioaccessibility of Bioactives during In Vitro Digestion. Foods, 2020, 9, 1316.	4.3	20
28	Effect of digestive enzymes and pH on variation of bioavailability of green tea during simulated in vitro gastrointestinal digestion. Food Science and Human Wellness, 2022, 11, 669-675.	4.9	20
29	Physicochemical properties and in vitro digestion of extruded rice with grape seed proanthocyanidins. Journal of Cereal Science, 2020, 95, 103064.	3.7	17
30	Comparison between microwave ooking and steamâ€cooking on starch properties and in vitro starch digestibility of cooked pigmented rice. Journal of Food Process Engineering, 2019, 42, e13150.	2.9	16
31	Effect of postâ€cooking storage on texture and in vitro starch digestion of Japonica rice. Journal of Food Process Engineering, 2019, 42, e12985.	2.9	16
32	Compression Deformation and Structural Relationships of Medium Grain Cooked Rice. Cereal Chemistry, 2006, 83, 636-640.	2.2	15
33	Development of Visualization Technique for Three-Dimensional Distribution of Protein and Starch in a Brown Rice Grain Using Sequentially Stained Sections Food Science and Technology Research, 2000, 6, 176-178.	0.6	14
34	Impact of particle size of pulverized citrus peel tissue on changes in antioxidant properties of digested fluids during simulated in vitro digestion. Food Science and Human Wellness, 2020, 9, 58-63.	4.9	14
35	Cooking of short, medium and long-grain rice in limited and excess water: Effects on microstructural characteristics and gastro-small intestinal starch digestion in vitro. LWT - Food Science and Technology, 2021, 146, 111379.	5.2	14

 $36 In vitro examination of starch digestibility of Saba banana [Musa <math>\hat{a} \in \hat{a} = 100 \text{ M}$ acuminata $\hat{a} \in \hat{A} = \hat{a} \in \hat{A}$ and $\hat{A} = \hat{a} \in \hat{A}$. A mass $\hat{a} \in \hat{A} = \hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$. A mass $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$. A mass $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$. A mass $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$. A mass $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$. A mass $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$. A mass $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$. A mass $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$. A mass $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$. A mass $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$. A mass $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$. A mass $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$. A mass $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$. A mass $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$. A mass $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$. A mass $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$. A mass $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$. A mass $\hat{a} \in \hat{A}$ and $\hat{a} \in \hat{A}$

#	Article	IF	CITATIONS
37	Young's Modulus and Poisson's Ratio Changes in Japanese Radish and Carrot Root Tissues during Boiling. International Journal of Food Properties, 2015, 18, 1006-1013.	3.0	12
38	Soft X-Ray Image Analysis to Detect Foreign Materials in Foods. Food Science and Technology Research, 2003, 9, 137-141.	0.6	10
39	Impact of postharvest drying conditions on <i>in vitro</i> starch digestibility and estimated glycemic index of cooked nonâ€waxy longâ€grain rice (<i>Oryza sativa</i> L.). Journal of the Science of Food and Agriculture, 2017, 97, 896-901.	3.5	10
40	Lipid droplet-associated gene expression and chromatin remodelling in LIPASE 5â€2-upstream region from beginning- to mid-endodormant bud in â€~Fuji' apple. Plant Molecular Biology, 2017, 95, 441-449.	3.9	9
41	Bio-properties of Saba banana (Musa â€~saba', ABB Group): Influence of maturity and changes during simulated in vitro gastrointestinal digestion. Scientific Reports, 2020, 10, 6701.	3.3	7
42	Co-extrusion of proanthocyanins from Chinese bayberry leaves modifies the physicochemical properties as well as the in vitro digestion of restructured rice. Food Structure, 2021, 27, 100182.	4.5	6
43	Effects of Freezing and Thawing on the Physical and Electrical Properties of Dehydrated Radish. Journal of the Japanese Society for Food Science and Technology, 2008, 55, 158-163.	0.1	5
44	Compression properties of the fruit body of king oyster mushroom <i>Pleurotus eryngii</i> . International Journal of Food Science and Technology, 2012, 47, 2487-2492.	2.7	5
45	Comparative Study of the Physico- and Biochemical Properties of Two Types of Salted Japanese Apricot (Prunus mume) Pickles. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	5
46	Changes in Starch Digestibility and Tissue Structure of Cooked Rice Grain Under Different <i>In vitro </i> Simulated Gastric Digestive Conditions. Journal of the Japanese Society for Food Science and Technology, 2019, 66, 170-178.	0.1	5
47	Assessment of free, esterified, and insoluble-bound phenolics of green and red perilla leaves and changes during simulated gastrointestinal digestion. , 2022, 1, 100018.		5
48	Low intensity of high pressure processing increases extractable recovery of polyphenols and antioxidant activities of non-astringent persimmon fruit. LWT - Food Science and Technology, 2021, 151, 112162.	5.2	4
49	Changes in Morphological and Functional Characteristics of Tea Leaves During Japanese Green Tea (Sencha) Manufacturing Process. Food and Bioprocess Technology, 2022, 15, 82-91.	4.7	4
50	Three-Dimensional Visualization of Sugar Contents of Melons Journal of the Japanese Society for Food Science and Technology, 2001, 48, 263-267.	0.1	3
51	Water Absorption Rate and Volume Change during Soaking for Adzuki Beans and Soybeans. Journal of the Japanese Society for Food Science and Technology, 2005, 52, 566-571.	0.1	3
52	Quality Evaluation of Rice. , 2008, , 377-400.		3
53	UNIAXIAL COMPRESSION AND STRUCTURAL DEFORMATION OF FERMENTED SOYBEAN SEED. Journal of Texture Studies, 2011, 42, 435-440.	2.5	3
54	Effects of Interactions Between Antioxidant Phytochemicals and Coexisting Food Components on Their Digestibility. , 2019, , 656-660.		3

#	Article	IF	CITATIONS
55	Effect of particle size of pulverized citrus peel tissue on elution characteristics of intracellular substances as influenced by type of solvent. Food Hydrocolloids, 2020, 100, 105392.	10.7	3
56	Influence of structural changes of brown rice by precise polishing on in vitro starch digestibility of cooked rice grain. Food Hydrocolloids for Health, 2022, 2, 100077.	3.9	3
57	Spectral Analysis of Reflected Soft X-ray for Detecting Foreign Materials in Foods. Food Science and Technology Research, 2003, 9, 231-236.	0.6	2
58	Three-dimensional Internal Structure of a Soybean Seed by Observation of Autofluorescence of Sequential Sections Journal of the Japanese Society for Food Science and Technology, 2003, 50, 213-217.	0.1	2
59	Water Absorption Characteristics of Dried Tomato and Surface Softening of Samples during Soaking. Journal of the Japanese Society for Food Science and Technology, 2006, 53, 522-525.	0.1	2
60	Importance of chemistry, nutrition and technology in rice processing. Food Chemistry, 2016, 191, 1.	8.2	2
61	Effect of Decontamination Treatment on Vitamin C and Potassium Attributes of Fresh-Cut Bell Pepper at Post-Washing Stage. Food and Bioprocess Technology, 2018, 11, 1230-1235.	4.7	2
62	Sweet potato microstructure, starch digestion, and glycemic index. , 2019, , 243-272.		2
63	Detection of Foreign Material in Beverage Container for Recycle Use by Soft X-ray Image Analysis Journal of the Japanese Society for Food Science and Technology, 1998, 45, 232-237.	0.1	1
64	Aggregates and Gel Network Structure of Globin Hydrolysates. Journal of Agricultural and Food Chemistry, 2001, 49, 2518-2522.	5.2	1
65	Observation Method for the Histological Structure of Cooked Rice Kernels Using Adhesive Tape. Journal of the Japanese Society for Food Science and Technology, 2003, 50, 319-323.	0.1	1
66	Changes in Mechanical and Microscopic Properties of a Soybean Seed during Experimental Natto Making Process. Japan Journal of Food Engineering, 2008, 9, 151-156.	0.3	1
67	Effect of Tedding-less Operation during Sun Drying on Rice Straw Property for Bioethanol Production. Japanese Journal of Farm Work Research, 2014, 49, 37-44.	0.2	1
68	X-ray Spectral Analysis with CdTe Sensor for Detection of Foreign Materials in Food Journal of the Japanese Society for Food Science and Technology, 1998, 45, 21-27.	0.1	0
69	3-D visualization of Soybean structure and compounds. , 2001, , .		0
70	Pilotâ€scale processing with alkaline pulping and enzymatic saccharification for bioethanol production from rice straw. Energy Science and Engineering, 2014, 2, 39-45.	4.0	0
71	Effect of Near Infrared Irradiation on Quality of Fresh-cut Lettuce During Storage. Japan Journal of Food Engineering, 2020, 21, 75-80.	0.3	0
72	Combined Effect of Mild Heat Treatment by Warm Sodium Hypochlorite Aqueous Solution and Active MAP on Browning of Fresh-Cut Celery. Japan Journal of Food Engineering, 2021, 22, 39-45.	0.3	0

#	Article	IF	CITATIONS
73	æ <mark>ኞ</mark> ‰©æ€§é£Ÿå"ã®æ¶^åŒ−特性. Kagaku To Seibutsu, 2020, 58, 596-598.	0.0	0
74	Effect of heat-moisture treatment to raw paddy rice (Oryza sativa L.) on cooked rice properties. Journal of Future Foods, 2021, 1, 179-186.	4.7	0