
Lea de Biasi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1699050/publications.pdf Version: 2024-02-01

LEA DE RIASI

#	Article	IF	CITATIONS
1	Rational Design of Quasi-Zero-Strain NCM Cathode Materials for Minimizing Volume Change Effects in All-Solid-State Batteries. , 2020, 2, 84-88.		66
2	Kinetic Limitations in Cycled Nickel-Rich NCM Cathodes and Their Effect on the Phase Transformation Behavior. ACS Applied Energy Materials, 2020, 3, 2821-2827.	5.1	25
3	Indirect state-of-charge determination of all-solid-state battery cells by X-ray diffraction. Chemical Communications, 2019, 55, 11223-11226.	4.1	25
4	Investigation into Mechanical Degradation and Fatigue of High-Ni NCM Cathode Material: A Long-Term Cycling Study of Full Cells. ACS Applied Energy Materials, 2019, 2, 7375-7384.	5.1	106
5	Chemical, Structural, and Electronic Aspects of Formation and Degradation Behavior on Different Length Scales of Niâ€Rich NCM and Liâ€Rich HEâ€NCM Cathode Materials in Liâ€Ion Batteries. Advanced Materials, 2019, 31, e1900985.	21.0	319
6	Phase Transformation Behavior and Stability of LiNiO ₂ Cathode Material for Liâ€lon Batteries Obtained from Inâ€Situ Gas Analysis and Operando Xâ€Ray Diffraction. ChemSusChem, 2019, 12, 2240-2250.	6.8	146
7	Volume Changes of Graphite Anodes Revisited: A Combined <i>Operando</i> X-ray Diffraction and <i>In Situ</i> Pressure Analysis Study. Journal of Physical Chemistry C, 2018, 122, 8829-8835.	3.1	256
8	Impact of Cathode Material Particle Size on the Capacity of Bulk-Type All-Solid-State Batteries. ACS Energy Letters, 2018, 3, 992-996.	17.4	201
9	Chemo-mechanical expansion of lithium electrode materials – on the route to mechanically optimized all-solid-state batteries. Energy and Environmental Science, 2018, 11, 2142-2158.	30.8	512
10	High entropy oxides for reversible energy storage. Nature Communications, 2018, 9, 3400.	12.8	643
11	Between Scylla and Charybdis: Balancing Among Structural Stability and Energy Density of Layered NCM Cathode Materials for Advanced Lithium-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 26163-26171.	3.1	233
12	Charge-Transfer-Induced Lattice Collapse in Ni-Rich NCM Cathode Materials during Delithiation. Journal of Physical Chemistry C, 2017, 121, 24381-24388.	3.1	242
13	LiCaFeF 6 : A zero-strain cathode material for use in Li-ion batteries. Journal of Power Sources, 2017, 362, 192-201.	7.8	25
14	Sol-Gel Processing and Electrochemical Conversion of Inverse Spinel-Type Li2NiF4. Journal of the Electrochemical Society, 2015, 162, A679-A686.	2.9	11
15	Direct synthesis of trirutile-type LiMgFeF6 and its electrochemical characterization as positive electrode in lithium-ion batteries. Journal of Power Sources, 2015, 274, 1200-1207.	7.8	11
16	Electrochemical characterization of monoclinic and orthorhombic Li3CrF6 as positive electrodes in lithium-ion batteries synthesized by a sol–gel process with environmentally benign chemicals. Journal of Power Sources, 2015, 294, 444-451.	7.8	10
17	Sol-Gel Based Synthesis of LiNiFeF ₆ and Its Electrochemical Characterization. Journal of the Electrochemical Society, 2014, 161, A1071-A1077.	2.9	14
18	Electrochemical Characterization of LiMnFeF ₆ for Use as Positive Electrode in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A1869-A1876.	2.9	9