Mehtap Oezaslan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1698906/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoporous Copper Ribbons Prepared by Chemical Dealloying of a Melt-Spun ZnCu Alloy. Journal of Physical Chemistry C, 2022, 126, 212-226.	3.1	9
2	Highly Durable Pt-Based Core–Shell Catalysts with Metallic and Oxidized Co Species for Boosting the Oxygen Reduction Reaction. ACS Catalysis, 2022, 12, 6394-6408.	11.2	30
3	How to Impede Hydrogen Evolution on Carbon Based Materials?. ECS Meeting Abstracts, 2022, MA2022-01, 1481-1481.	0.0	0
4	Self-supported Pt–CoO networks combining high specific activity with high surface area for oxygen reduction. Nature Materials, 2021, 20, 208-213.	27.5	139
5	Tuning of Pt–Co nanoparticle motifs for enhancing the HOR performance in alkaline media. Journal of Materials Chemistry A, 2021, 9, 15415-15431.	10.3	19
6	A Unified Research Data Infrastructure for Catalysis Research – Challenges and Concepts. ChemCatChem, 2021, 13, 3223-3236.	3.7	45
7	Insights from <i>In Situ</i> Studies on the Early Stages of Platinum Nanoparticle Formation. Journal of Physical Chemistry Letters, 2021, 12, 3224-3231.	4.6	11
8	Surfactant-free synthesis of size controlled platinum nanoparticles: Insights from in situ studies. Applied Surface Science, 2021, 549, 149263.	6.1	18
9	Quantitative 3D Characterization of Nanoporous Gold Nanoparticles by Transmission Electron Microscopy. Microscopy and Microanalysis, 2021, 27, 678-686.	0.4	3
10	The Oxygen Reduction Reaction on Pt: Why Particle Size and Interparticle Distance Matter. ACS Catalysis, 2021, 11, 7144-7153.	11.2	49
11	Insights from Operando and Identical Location (IL) Techniques on the Activation of Electrocatalysts for the Conversion of CO2: A Mini-Review. Chimia, 2021, 75, 733.	0.6	4
12	Teaching old precursors new tricks: Fast room temperature synthesis of surfactant-free colloidal platinum nanoparticles. Journal of Colloid and Interface Science, 2020, 577, 319-328.	9.4	20
13	Solventâ€Dependent Growth and Stabilization Mechanisms of Surfactantâ€Free Colloidal Pt Nanoparticles. Chemistry - A European Journal, 2020, 26, 9012-9023.	3.3	26
14	Fundamental Aspects of Contamination during the Hydrogen Evolution/Oxidation Reaction in Alkaline Media. Journal of the Electrochemical Society, 2020, 167, 024506.	2.9	6
15	CO2 electrolysis – Complementary operando XRD, XAS and Raman spectroscopy study on the stability of CuxO foam catalysts. Journal of Catalysis, 2020, 389, 592-603.	6.2	42
16	Dual Metastability in Electroless Plating: Complex Inertness Enabling the Deposition of Compositionâ€Tunable Platinum Copper Alloy Nanostructures. Chemistry - A European Journal, 2020, 26, 3030-3033.	3.3	6
17	The Dissolution Dilemma for Low Pt Loading Polymer Electrolyte Membrane Fuel Cell Catalysts. Journal of the Electrochemical Society, 2020, 167, 164501.	2.9	32
18	(Invited) Towards Solving the Long Standing Mystery of the Chemical State of Co in PtxCo1-X to Boost HOR and ORR. ECS Meeting Abstracts, 2020, MA2020-02, 2300-2300.	0.0	0

#	Article	lF	CITATIONS
19	Iron Contamination and Local Distribution within a 50 Cm Single-Channel Proton Exchange Membrane Water Electrolysis Cell. ECS Meeting Abstracts, 2020, MA2020-02, 2456-2456.	0.0	0
20	Effects of Capping Agents on the Oxygen Reduction Reaction Activity and Shape Stability of Pt Nanocubes. ChemPhysChem, 2019, 20, 3010-3023.	2.1	53
21	Controlled Synthesis of Surfactantâ€Free Waterâ€Dispersible Colloidal Platinum Nanoparticles by the Co4Cat Process. ChemSusChem, 2019, 12, 1229-1239.	6.8	27
22	The role of polyvinylpyrrolidone (PVP) as a capping and structure-directing agent in the formation of Pt nanocubes. Nanoscale Advances, 2019, 1, 3095-3106.	4.6	175
23	Ir nanoparticles with ultrahigh dispersion as oxygen evolution reaction (OER) catalysts: synthesis and activity benchmarking. Catalysis Science and Technology, 2019, 9, 6345-6356.	4.1	61
24	Effect of Monovalent Cations on the HOR/HER Activity for Pt in Alkaline Environment. Journal of the Electrochemical Society, 2019, 166, F66-F73.	2.9	50
25	Halideâ€Induced Leaching of Pt Nanoparticles – Manipulation of Particle Size by Controlled Ostwald Ripening. ChemNanoMat, 2019, 5, 462-471.	2.8	17
26	Contamination of Metal Impurities during Hydrogen Evolution/Oxidation Reaction. ECS Meeting Abstracts, 2019, , .	0.0	0
27	Comprehensive Operando Electrochemical XAS Study on Nanoporous Cu Oxide Foams for CO2 Reduction Reaction. ECS Meeting Abstracts, 2019, , .	0.0	0
28	Novel Pt-Co Catalyst Concept to Boost the Oxygen Reduction Reaction for Acidic and Alkaline Polymer Electrolyte Fuel Cells. ECS Meeting Abstracts, 2019, , .	0.0	0
29	Hydrogen Oxidation Reaction on Pt and Pt Alloys and the Role of Cations in Alkaline Media. ECS Meeting Abstracts, 2019, , .	0.0	0
30	Contamination of Metal Impurities during Hydrogen Evolution/Oxidation Reaction. ECS Transactions, 2019, 92, 703-714.	0.5	0
31	TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1319-1333.	2.8	15
32	Dealloying on the Atomic Scale. , 2018, , 32-43.		1
33	Fundamental Insights in Degradation Mechanisms of Pt/C Nanoparticles for the ORR. ECS Transactions, 2018, 86, 433-445.	0.5	13
34	Ligament Evolution in Nanoporous Cu Films Prepared by Dealloying. Journal of Physical Chemistry C, 2018, 122, 26378-26384.	3.1	9
35	Nucleation $\hat{a} \in \mathbb{C}$ ontrolled Solution Deposition of Silver Nanoplate Architectures for Facile Derivatization and Catalytic Applications. Advanced Materials, 2018, 30, e1805179.	21.0	23
36	Investigating Particle Size Effects in Catalysis by Applying a Size-Controlled and Surfactant-Free Synthesis of Colloidal Nanoparticles in Alkaline Ethylene Glycol: Case Study of the Oxygen Reduction Reaction on Pt. ACS Catalysis, 2018, 8, 6627-6635.	11.2	119

#	Article	IF	CITATIONS
37	Fundamental Insights in Degradation Mechanisms of Pt/C Nanoparticles for the ORR. ECS Meeting Abstracts, 2018, , .	0.0	0
38	Operando XAS Studies: Electro-Reduction of CO2 on Nanoporous Cu Foams. ECS Meeting Abstracts, 2018, , .	0.0	0
39	Shape-Controlled Pt Nanoparticles for the Electro-Reduction of Oxygen. ECS Meeting Abstracts, 2018, , .	0.0	0
40	Initial Zinc Electrodeposition on Copper Studied By in-Situ AFM. ECS Meeting Abstracts, 2018, , .	0.0	0
41	Carbon Supported Pt-Co Alloy Nanoparticles As HOR and ORR Catalyst for PEM Fuel Cells. ECS Meeting Abstracts, 2018, , .	0.0	0
42	Nanoparticles in a box: a concept to isolate, store and re-use colloidal surfactant-free precious metal nanoparticles. Journal of Materials Chemistry A, 2017, 5, 6140-6145.	10.3	37
43	Electrochemical Cleaning of Polyvinylpyrrolidone-capped Pt Nanocubes for the Oxygen Reduction Reaction. Electrochimica Acta, 2017, 241, 544-552.	5.2	40
44	German Catalysis Meeting – 50 Years and as Young as Ever. ChemCatChem, 2017, 9, 2018-2020.	3.7	0
45	Structural Analysis and Electrochemical Properties of Bimetallic Palladium–Platinum Aerogels Prepared by a Twoâ€ S tep Gelation Process. ChemCatChem, 2017, 9, 798-808.	3.7	20
46	Preparation and Characterization of Nanoporous Copper Films by Chemical Dealloying. ECS Transactions, 2017, 80, 541-550.	0.5	1
47	Homogeneity and elemental distribution in self-assembled bimetallic Pd–Pt aerogels prepared by a spontaneous one-step gelation process. Physical Chemistry Chemical Physics, 2016, 18, 20640-20650.	2.8	22
48	Frontispiece: Alloying Behavior of Self-Assembled Noble Metal Nanoparticles. Chemistry - A European Journal, 2016, 22, .	3.3	1
49	Alloying Behavior of Selfâ€Assembled Noble Metal Nanoparticles. Chemistry - A European Journal, 2016, 22, 13446-13450.	3.3	25
50	Electrocatalytic hydrogen peroxide formation on mesoporous non-metal nitrogen-doped carbon catalyst. Journal of Energy Chemistry, 2016, 25, 251-257.	12.9	107
51	Weimar 2015: Catalysing Tomorrow's Solutions. ChemCatChem, 2015, 7, 1794-1796.	3.7	2
52	Electroless plating of ultrathin palladium films: self-initiated deposition and application in microreactor fabrication. Materials Research Express, 2015, 2, 105010.	1.6	15
53	Noble Metal Aerogels—Synthesis, Characterization, and Application as Electrocatalysts. Accounts of Chemical Research, 2015, 48, 154-162.	15.6	313
54	High-resolution and large-area nanoparticle arrays using EUV interference lithography. Nanoscale, 2015, 7, 7386-7393.	5.6	51

#	Article	IF	CITATIONS
55	Pt-Based Core–Shell Catalyst Architectures for Oxygen Fuel Cell Electrodes. Journal of Physical Chemistry Letters, 2013, 4, 3273-3291.	4.6	346
56	Controlling Catalytic Selectivities during CO ₂ Electroreduction on Thin Cu Metal Overlayers. Journal of Physical Chemistry Letters, 2013, 4, 2410-2413.	4.6	168
57	Electroless synthesis of nanostructured nickel and nickel–boron tubes and their performance as unsupported ethanol electrooxidation catalysts. Journal of Power Sources, 2013, 222, 243-252.	7.8	82
58	German Catalysis, Celebrated in Weimar. ChemCatChem, 2013, 5, 1297-1298.	3.7	2
59	Core-Shell Fine Structure and Size-Dependent Morphology of Dealloyed Pt Bimetallic Nanoparticle Fuel Cell Electrocatalysts. ECS Transactions, 2013, 50, 1633-1641.	0.5	2
60	Oxygen Electroreduction on PtCo ₃ , PtCo and Pt ₃ Co Alloy Nanoparticles for Alkaline and Acidic PEM Fuel Cells. Journal of the Electrochemical Society, 2012, 159, B394-B405.	2.9	148
61	PtCu ₃ , PtCu and Pt ₃ Cu Alloy Nanoparticle Electrocatalysts for Oxygen Reduction Reaction in Alkaline and Acidic Media. Journal of the Electrochemical Society, 2012, 159, B444-B454.	2.9	215
62	Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. ACS Catalysis, 2012, 2, 1765-1772.	11.2	2,019
63	Size-Dependent Morphology of Dealloyed Bimetallic Catalysts: Linking the Nano to the Macro Scale. Journal of the American Chemical Society, 2012, 134, 514-524.	13.7	340
64	Formation and Analysis of Core–Shell Fine Structures in Pt Bimetallic Nanoparticle Fuel Cell Electrocatalysts. Journal of Physical Chemistry C, 2012, 116, 19073-19083.	3.1	105
65	Core-Shell Fine Structure and Size-Dependent Morphology of Dealloyed Pt Bimetallic Nanoparticle Fuel Cell Electrocatalysts. ECS Meeting Abstracts, 2012, , .	0.0	0
66	Mesoporous Nitrogen Doped Carbon Supported Platinum PEM Fuel Cell Electrocatalyst Made From Ionic Liquids. ChemCatChem, 2012, 4, 479-483.	3.7	56
67	In Situ Observation of the Thermally Induced Growth of Platinumâ€Nanoparticle Catalysts Using Highâ€Temperature Xâ€ray Diffraction. ChemPhysChem, 2012, 13, 828-834.	2.1	19
68	Activity, Structure and Degradation of Dealloyed PtNi3Nanoparticle Electrocatalyst for the Oxygen Reduction Reaction in PEMFC. Journal of the Electrochemical Society, 2011, 159, B24-B33.	2.9	94
69	Oxygen Electroreduction on PtxCo1-x and PtxCu1-x Alloy Nanoparticles for Basic and Acidic PEM Fuel Cell. ECS Transactions, 2011, 41, 1659-1668.	0.5	5
70	In Situ Observation of Bimetallic Alloy Nanoparticle Formation and Growth Using High-Temperature XRD. Chemistry of Materials, 2011, 23, 2159-2165.	6.7	118
71	Stability and Degradation of Dealloyed PtCu3, PtCo3 and PtNi3 Nanoparticle PEM Fuel Cell Electrocatalysts. ECS Meeting Abstracts, 2011, , .	0.0	0
72	Activity, Stability, and Degradation Mechanisms of Dealloyed PtCu ₃ and PtCo ₃ Nanoparticle Fuel Cell Catalysts. ChemCatChem, 2011, 3, 1805-1813.	3.7	61

#	Article	IF	CITATIONS
73	Multiple activation of ion track etched polycarbonate for the electroless synthesis of metal nanotubes. Applied Physics A: Materials Science and Processing, 2011, 105, 847-854.	2.3	37
74	Activity of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell. Journal of Power Sources, 2011, 196, 5240-5249.	7.8	227
75	Activity and Structure of Dealloyed PtNi ₃ Nanoparticle Electrocatalyst for Oxygen Reduction Reaction in PEMFC. ECS Transactions, 2011, 41, 1079-1088.	0.5	16
76	In-situ High Temperature X-ray Diffraction Study of PtCu3 Alloy Electrocatalyst for PEMFC. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 2111-2111.	1.2	5
77	Structure-Activity Relationship of Dealloyed PtCo3 and PtCu3 Nanoparticle Electrocatalyst for Oxygen Reduction Reaction in PEMFC. ECS Transactions, 2010, 33, 333-341.	0.5	18
78	Activity, stability and degradation of multi walled carbon nanotube (MWCNT) supported Pt fuel cell electrocatalysts. Physical Chemistry Chemical Physics, 2010, 12, 15251.	2.8	158
79	NanopartikulÃæ bimetallische Kern-Schale-Katalysatoren für Brennstoffzellen. Chemie-Ingenieur-Technik, 2008, 80, 1267-1267.	0.8	3
80	Direct determination of selenium in sub-milligram amounts of human sperm nuclei by electrothermal atomic absorption spectrometry. Microchemical Journal, 2007, 85, 239-243.	4.5	7