## Jung-Oh Ahn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1698785/publications.pdf Version: 2024-02-01



ШИС-ОНАНИ

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris<br>for strain improvement. Microbial Cell Factories, 2010, 9, 50.                                                            | 1.9 | 118       |
| 2  | Enhanced Photodynamic Cancer Treatment by Mitochondriaâ€Targeting and Brominated Nearâ€Infrared<br>Fluorophores. Advanced Science, 2018, 5, 1700481.                                                                              | 5.6 | 105       |
| 3  | Production of (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer from coffee waste oil using engineered Ralstonia eutropha. Bioprocess and Biosystems Engineering, 2018, 41, 229-235.                                            | 1.7 | 90        |
| 4  | Enhanced isobutanol production from acetate by combinatorial overexpression of acetyl oA<br>synthetase and anaplerotic enzymes in engineered <i>Escherichia coli</i> . Biotechnology and<br>Bioengineering, 2018, 115, 1971-1978. | 1.7 | 58        |
| 5  | Translation elongation factor 1-α gene from Pichia pastoris: molecular cloning, sequence, and use of<br>its promoter. Applied Microbiology and Biotechnology, 2007, 74, 601-608.                                                  | 1.7 | 56        |
| 6  | Genomeâ€scale metabolic modeling and in silico analysis of lipid accumulating yeast <i>Candida<br/>tropicalis</i> for dicarboxylic acid production. Biotechnology and Bioengineering, 2016, 113, 1993-2004.                       | 1.7 | 55        |
| 7  | Whole-cell biocatalysis using cytochrome P450 monooxygenases for biotransformation of sustainable bioresources (fatty acids, fatty alkanes, and aromatic amino acids). Biotechnology Advances, 2020, 40, 107504.                  | 6.0 | 50        |
| 8  | Enhancement of Monascus Pigment Production by the Culture of Monascus sp. J101 at Low<br>Temperature. Biotechnology Progress, 2006, 22, 338-340.                                                                                  | 1.3 | 45        |
| 9  | Phosphate-Responsive Promoter of a <i>Pichia pastoris</i> Sodium Phosphate Symporter. Applied and Environmental Microbiology, 2009, 75, 3528-3534.                                                                                | 1.4 | 40        |
| 10 | Protective efficacy of Streptococcus iniae derived enolase against Streptococcal infection in a zebrafish model. Veterinary Immunology and Immunopathology, 2016, 170, 25-29.                                                     | 0.5 | 40        |
| 11 | Artificial de novo biosynthesis of hydroxystyrene derivatives in a tyrosine overproducing Escherichia<br>coli strain. Microbial Cell Factories, 2015, 14, 78.                                                                     | 1.9 | 35        |
| 12 | Improved l-threonine production of Escherichia coli mutant by optimization of culture conditions.<br>Journal of Bioscience and Bioengineering, 2006, 101, 127-130.                                                                | 1.1 | 34        |
| 13 | Gamma-Aminobutyric Acid Production Using Immobilized Glutamate Decarboxylase Followed by<br>Downstream Processing with Cation Exchange Chromatography. International Journal of Molecular<br>Sciences, 2013, 14, 1728-1739.       | 1.8 | 34        |
| 14 | Production of glutaric acid from 5-aminovaleric acid using Escherichia coli whole cell bio-catalyst<br>overexpressing GabTD from Bacillus subtilis. Enzyme and Microbial Technology, 2018, 118, 57-65.                            | 1.6 | 27        |
| 15 | Production of glutaric acid from 5-aminovaleric acid by robust whole-cell immobilized with polyvinyl alcohol and polyethylene glycol. Enzyme and Microbial Technology, 2019, 128, 72-78.                                          | 1.6 | 27        |
| 16 | Identification of novel immunogenic proteins in pathogenic Haemophilus parasuis based on genome<br>sequence analysis. Veterinary Microbiology, 2011, 148, 89-92.                                                                  | 0.8 | 26        |
| 17 | NADPH-dependent pgi-gene knockout Escherichia coli metabolism producing shikimate on different carbon sources. FEMS Microbiology Letters, 2011, 324, 10-16.                                                                       | 0.7 | 25        |
| 18 | Expression, Immobilization and Enzymatic Properties of Glutamate Decarboxylase Fused to a<br>Cellulose-Binding Domain. International Journal of Molecular Sciences, 2012, 13, 358-368.                                            | 1.8 | 25        |

Jung-Oh Ahn

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Combinatorial application of two aldehyde oxidoreductases on isobutanol production in the presence of furfural. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 37-44.                         | 1.4 | 25        |
| 20 | Effective production of human growth factors in Escherichia coli by fusing with small protein<br>6HFh8. Microbial Cell Factories, 2021, 20, 9.                                                                 | 1.9 | 25        |
| 21 | Evaluation of a silica-coated magnetic nanoparticle for the immobilization of a His-tagged lipase.<br>Biocatalysis and Biotransformation, 2009, 27, 246-253.                                                   | 1.1 | 23        |
| 22 | Development of a promising microbial platform for the production of dicarboxylic acids from biorenewable resources. Biotechnology for Biofuels, 2018, 11, 310.                                                 | 6.2 | 23        |
| 23 | Biotransformation of dicarboxylic acids from vegetable oil–derived sources: current methods and suggestions for improvement. Applied Microbiology and Biotechnology, 2019, 103, 1545-1555.                     | 1.7 | 22        |
| 24 | Enhanced production of glutaric acid by NADH oxidase and GabDâ€reinforced bioconversion from<br><scp>l</scp> â€lysine. Biotechnology and Bioengineering, 2019, 116, 333-341.                                   | 1.7 | 20        |
| 25 | Microbial production of sebacic acid from a renewable source: production, purification, and polymerization. Green Chemistry, 2019, 21, 6491-6501.                                                              | 4.6 | 18        |
| 26 | Complete genome sequence of the sulfur-oxidizing chemolithoautotrophic Sulfurovum<br>lithotrophicum 42BKTT. Standards in Genomic Sciences, 2017, 12, 54.                                                       | 1.5 | 17        |
| 27 | Codon optimization of Saccharomyces cerevisiae mating factor alpha prepro-leader to improve recombinant protein production in Pichia pastoris. Biotechnology Letters, 2016, 38, 2137-2143.                     | 1.1 | 15        |
| 28 | Efficient, galactose-free production of Candida antarctica lipase B by GAL10 promoter in Δgal80 mutant<br>of Saccharomyces cerevisiae. Process Biochemistry, 2009, 44, 1190-1192.                              | 1.8 | 14        |
| 29 | Biomass-derived molecules modulate the behavior of Streptomyces coelicolor for antibiotic production. 3 Biotech, 2016, 6, 223.                                                                                 | 1.1 | 14        |
| 30 | Effect of decanoic acid and 10-hydroxydecanoic acid on the biotransformation of methyl decanoate to sebacic acid. AMB Express, 2018, 8, 75.                                                                    | 1.4 | 14        |
| 31 | Selective extraction of glutaric acid from biological production systems using n-butanol. Journal of<br>Industrial and Engineering Chemistry, 2020, 82, 98-104.                                                | 2.9 | 14        |
| 32 | Development of glutaric acid production consortium system with α-ketoglutaric acid regeneration by glutamate oxidase in Escherichia coli. Enzyme and Microbial Technology, 2020, 133, 109446.                  | 1.6 | 14        |
| 33 | <i>GAL</i> promoter-driven heterologous gene expression in <i>Saccharomyces cerevisiae</i> Δ strain at<br>anaerobic alcoholic fermentation. FEMS Yeast Research, 2013, 13, 140-142.                            | 1.1 | 13        |
| 34 | Synthesis of Fe3O4@nickel–silicate core–shell nanoparticles for His-tagged enzyme immobilizing<br>agents. Nanotechnology, 2016, 27, 495705.                                                                    | 1.3 | 13        |
| 35 | Enhanced isobutanol production by co-production of polyhydroxybutyrate and cofactor engineering.<br>Journal of Biotechnology, 2020, 320, 66-73.                                                                | 1.9 | 12        |
| 36 | Isolation and characterization of a novel Îμ-caprolactam-degrading microbe, Acinetobacter<br>calcoaceticus, from industrial wastewater by chemostat-enrichment. Biotechnology Letters, 2013, 35,<br>2069-2072. | 1.1 | 11        |

Jung-Oh Ahn

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Direct Biotransformation of Nonanoic Acid and Its Esters to Azelaic Acid by Whole Cell Biocatalyst of<br>Candida tropicalis. ACS Sustainable Chemistry and Engineering, 2019, 7, 17958-17966.                             | 3.2 | 10        |
| 38 | Melamine-promoted formation of bright and stable DNA–silver nanoclusters and their antimicrobial properties. Journal of Materials Chemistry B, 2019, 7, 2512-2517.                                                        | 2.9 | 10        |
| 39 | Complete Genome Sequence of Streptococcus iniae YSFST01-82, Isolated from Olive Flounder in Jeju,<br>South Korea. Genome Announcements, 2015, 3, .                                                                        | 0.8 | 9         |
| 40 | Characterization of the newly isolated ω-oxidizing yeast Candida sorbophila DS02 and its potential applications in long-chain dicarboxylic acid production. Applied Microbiology and Biotechnology, 2017, 101, 6333-6342. | 1.7 | 9         |
| 41 | High-level production of N-terminal pro-brain natriuretic peptide, as a calibrant of heart failure diagnosis, in Escherichia coli. Applied Microbiology and Biotechnology, 2019, 103, 4779-4788.                          | 1.7 | 9         |
| 42 | <i>GAL</i> promoter-driven heterologous gene expression in <i>Saccharomyces cerevisiae</i> î" strain at<br>anaerobic alcoholic fermentation. FEMS Yeast Research, 2013, 13, 140-142.                                      | 1.1 | 8         |
| 43 | Efficient proteolytic cleavage by insertion of oligopeptide linkers and its application to production of recombinant human interleukin-6 in Escherichia coli. Enzyme and Microbial Technology, 2009, 44, 254-262.         | 1.6 | 7         |
| 44 | Identification of novel immunogenic proteins against Streptococcus parauberis in a zebrafish model<br>by reverse vaccinology. Microbial Pathogenesis, 2019, 127, 56-59.                                                   | 1.3 | 7         |
| 45 | Engineered EscherichiaÂcoli strains as platforms for biological production of isoprene. FEBS Open Bio,<br>2020, 10, 780-788.                                                                                              | 1.0 | 7         |
| 46 | Biohydrogen production from glycerol by novel Clostridium sp. SH25 and its application to biohydrogen car operation. Korean Journal of Chemical Engineering, 2022, 39, 2156-2164.                                         | 1.2 | 7         |
| 47 | Microcrystalline Cellulose for Delivery of Recombinant Protein-Based Antigen against Erysipelas in<br>Mice. BioMed Research International, 2018, 2018, 1-7.                                                               | 0.9 | 6         |
| 48 | Construction of an Artificial Biosynthetic Pathway for the Styrylpyrone Compound<br>11-Methoxy-Bisnoryangonin Produced in Engineered Escherichia coli. Frontiers in Microbiology, 2021,<br>12, 714335.                    | 1.5 | 6         |
| 49 | Biosynthesis of C12 Fatty Alcohols by Whole Cell Biotransformation of C12 Derivatives Using<br>Escherichia coli Two-cell Systems Expressing CAR and ADH. Biotechnology and Bioprocess<br>Engineering, 2021, 26, 392-401.  | 1.4 | 5         |
| 50 | Soluble Expression of OmpA from Haemophilus parasuis in Escherichia coli and Its Protective Effects<br>in the Mouse Model of Infection. Journal of Microbiology and Biotechnology, 2012, 22, 1307-1309.                   | 0.9 | 5         |
| 51 | L-Glycine Alleviates Furfural-Induced Growth Inhibition during Isobutanol Production in Escherichia coli. Journal of Microbiology and Biotechnology, 2017, 27, 2165-2172.                                                 | 0.9 | 5         |
| 52 | Development of novel on-line capillary gas chromatography-based analysis method for volatile<br>organic compounds produced by aerobic fermentation. Journal of Bioscience and Bioengineering,<br>2019, 127, 121-127.      | 1.1 | 4         |
| 53 | Engineering <i>Yarrowia lipolytica</i> for <i>de novo</i> production of tetraacetyl phytosphingosine.<br>Journal of Applied Microbiology, 2021, 130, 1981-1992.                                                           | 1.4 | 4         |
| 54 | Application of l-glutamate oxidase from Streptomyces sp. X119-6 with catalase (KatE) to whole-cell systems for glutaric acid production in Escherichia coli. Korean Journal of Chemical Engineering, 2021, 38, 2106-2112. | 1.2 | 4         |

Јилс-Он Анл

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Enhanced mating-type switching and sexual hybridization in heterothallic yeast Yarrowia lipolytica.<br>FEMS Yeast Research, 2020, 20, .                                                                                                | 1.1 | 3         |
| 56 | Expression and purification of soluble and active human enterokinase light chain in Escherichia coli.<br>Biotechnology Reports (Amsterdam, Netherlands), 2021, 30, e00626.                                                             | 2.1 | 3         |
| 57 | Construction of an Artificial Biosynthetic Pathway for Zingerone Production in <i>Escherichia coli</i> Using Benzalacetone Synthase from <i>Piper methysticum</i> . Journal of Agricultural and Food Chemistry, 2021, 69, 14620-14629. | 2.4 | 3         |
| 58 | Engineering of CYP153A33 With Enhanced Ratio of Hydroxylation to Overoxidation Activity in<br>Whole-Cell Biotransformation of Medium-Chain 1-Alkanols. Frontiers in Bioengineering and<br>Biotechnology, 2021, 9, 817455.              | 2.0 | 3         |
| 59 | Development of a glutaric acid production system equipped with stepwise feeding of monosodium glutamate by whole-cell bioconversion. Enzyme and Microbial Technology, 2022, 159, 110053.                                               | 1.6 | 3         |
| 60 | Monooxygenase-mediated cascade oxidation of fatty acids for the production of biopolymer building blocks. Biomass Conversion and Biorefinery, 2023, 13, 12319-12331.                                                                   | 2.9 | 2         |
| 61 | Immobilization of a His-tagged lipase on a silica-coated magnetic nanoparticle coupled with metal affinity ligands. Journal of Biotechnology, 2008, 136, S334.                                                                         | 1.9 | 1         |