Philippe Cluzel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1698630/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Filtering input fluctuations in intensity and in time underlies stochastic transcriptional pulses without feedback. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26608-26615.	7.1	6
2	Stochastic transcriptional pulses orchestrate flagellar biosynthesis in <i>Escherichia coli</i> . Science Advances, 2020, 6, eaax0947.	10.3	28
3	Systematic characterization of maturation time of fluorescent proteins in living cells. Nature Methods, 2018, 15, 47-51.	19.0	356
4	Adaptive Resistance in Bacteria Requires Epigenetic Inheritance, Genetic Noise, and Cost of Efflux Pumps. PLoS ONE, 2015, 10, e0118464.	2.5	81
5	Uncovering Scaling Laws to Infer Multidrug Response of Resistant Microbes and Cancer Cells. Cell Reports, 2014, 6, 1073-1084.	6.4	53
6	Environmental perturbations lift the degeneracy of the genetic code to regulate protein levels in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2419-2424.	7.1	88
7	The single-cell chemostat: an agarose-based, microfluidic device for high-throughput, single-cell studies of bacteria and bacterial communities. Lab on A Chip, 2012, 12, 1487.	6.0	152
8	Trade-offs between drug toxicity and benefit in the multi-antibiotic resistance system underlie optimal growth of E. coli. BMC Systems Biology, 2012, 6, 48.	3.0	42
9	Mechanism-independent method for predicting response to multidrug combinations in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12254-12259.	7.1	126
10	Fine-Tuning of Chemotactic Response in E. coli Determined by High-Throughput Capillary Assay. Current Microbiology, 2011, 62, 764-769.	2.2	7
11	Interdependence of behavioural variability and response to small stimuli in bacteria. Nature, 2010, 468, 819-823.	27.8	67
12	Relationship between cellular response and behavioral variability in bacterial chemotaxis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3304-3309.	7.1	119
13	Dynamical Determinants of Drug-Inducible Gene Expression in a Single Bacterium. Biophysical Journal, 2006, 90, 3315-3321.	0.5	20
14	Effects of topology on network evolution. Nature Physics, 2006, 2, 532-536.	16.7	75
15	From molecular noise to behavioural variability in a single bacterium. Nature, 2004, 428, 574-578.	27.8	405
16	A high-throughput capillary assay for bacterial chemotaxis. Journal of Microbiological Methods, 2003, 55, 315-319.	1.6	26