Nouari Saheb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/169837/publications.pdf Version: 2024-02-01

NOUADI SAHER

#	Article	IF	CITATIONS
1	Kinetic analysis of the formation of magnesium aluminate spinel (MgAl2O4) from α-Al2O3 and MgO nanopowders. Journal of Thermal Analysis and Calorimetry, 2022, 147, 11549-11559.	2.0	6
2	Kinetics of α-cordierite formation from nano-oxide powders. Ceramics International, 2022, 48, 23921-23930.	2.3	5
3	Kinetics of mullitization from sol-gel synthesized precursors. Journal of the Indian Chemical Society, 2022, 99, 100473.	1.3	3
4	Smart Fiber Optics Embedding in Powder-Based Materials: Numerical and Experimental Assessment. Arabian Journal for Science and Engineering, 2021, 46, 8009-8035.	1.7	2
5	Metal Matrix Composite in Heat Sink Application: Reinforcement, Processing, and Properties. Materials, 2021, 14, 6257.	1.3	11
6	Microstructure, thermal expansion, hardness and thermodynamic parameters of cordierite materials synthesized from Algerian natural clay minerals and magnesia. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2020, 60, 291-291.	0.9	12
7	Low temperature synthesis of highly pure cordierite materials by spark plasma sintering nano-oxide powders. Ceramics International, 2020, 46, 23910-23921.	2.3	16
8	Electrical conductivity of spark plasma sintered Al2O3–SiC and Al2O3-carbon nanotube nanocomposites. Ceramics International, 2020, 46, 16008-16019.	2.3	25
9	Formation of anorthite containing cordierite materials through reaction sintering kaolin, MgO and CaO precursors. Science of Sintering, 2020, 52, 135-147.	0.5	6
10	Corrosion Behavior of Spark Plasma Sintered Alumina and Al2O3-SiC-CNT Hybrid Nanocomposite. Materials Research, 2020, 23, .	0.6	0
11	Recent Advances and Future Prospects in Spark Plasma Sintered Alumina Hybrid Nanocomposites. Nanomaterials, 2019, 9, 1607.	1.9	20
12	Effect of temperature and magnesia on phase transformation kinetics in stoichiometric and non-stoichiometric cordierite ceramics prepared from kaolinite precursors. Journal of Thermal Analysis and Calorimetry, 2019, 137, 11-23.	2.0	12
13	On the thermal conductivity of spark plasma sintered alumina hybrid nanocomposites: Estimation modeling and experimental validation. Science of Sintering, 2019, 51, 101-114.	0.5	1
14	Hard and tough Al2O3-SiC-CNT hybrid ceramic nanocomposite produced by molecular level mixing and spark plasma sintering. Journal of the Australian Ceramic Society, 2018, 54, 401-410.	1.1	9
15	Phase formation and crystallization kinetics in cordierite ceramics prepared from kaolinite and magnesia. Ceramics International, 2018, 44, 3649-3657.	2.3	33
16	Dilatometric and DSC Study of the Kinetics of Discontinuous Precipitation of Ag2Al Intermetallic in Al – 10% Ag Alloy. Metal Science and Heat Treatment, 2018, 60, 185-189.	0.2	3
17	Synthesis and Thermal Behavior of Cordierite Ceramics from Algerian Kaolin and Magnesium Oxide. Acta Physica Polonica A, 2018, 134, 71-74.	0.2	6
18	Compressive strength and thermal properties of spark plasma sintered Al-Al2O3 nanocomposite. Science of Sintering, 2018, 50, 1-14.	0.5	5

NOUARI SAHEB

#	Article	IF	CITATIONS
19	Electrical conductivity and thermal properties of spark plasma sintered Al2O3-SiC-CNT hybrid nanocomposites. Ceramics International, 2017, 43, 5715-5722.	2.3	27
20	Mullite-zirconia composites prepared from halloysite reaction sintered with boehmite and zirconia. Applied Clay Science, 2017, 146, 70-80.	2.6	26
21	Processing, microstructure and mechanical properties of a TiO2 nanoparticles reinforced magnesium for biocompatible application. Metallurgical Research and Technology, 2017, 114, 214.	0.4	1
22	Thermal Decomposition Kinetics of Algerian Tamazarte Kaolin by Differential Thermal Analysis (DTA). Acta Physica Polonica A, 2017, 131, 382-386.	0.2	2
23	Temperature-dependent thermal properties of spark plasma sintered alumina. Science of Sintering, 2017, 49, 117-128.	0.5	2
24	W-25%Re-HfC composite materials for Pin tool material applications: Synthesis and consolidation. Journal of Alloys and Compounds, 2016, 674, 189-199.	2.8	20
25	Microstructure and mechanical properties of spark plasma sintered Al2O3-SiC-CNTs hybrid nanocomposites. Ceramics International, 2016, 42, 12330-12340.	2.3	38
26	Kinetics of mullite formation from kaolinite and boehmite. Molecular Crystals and Liquid Crystals, 2016, 628, 55-64.	0.4	4
27	Molecular level mixing: An approach for synthesis of homogenous hybrid ceramic nanocomposite powders. Powder Technology, 2016, 291, 121-130.	2.1	26
28	Upscaling Sensing Materials With Challenges of Sensors Embedding in Powder Based Materials and Polymers. , 2015, , .		1
29	Fiber-Embedded Metallic Materials: From Sensing towards Nervous Behavior. Materials, 2015, 8, 7938-7961.	1.3	36
30	Effect of Processing on Mechanically Alloyed and Spark Plasma Sintered Al-Al ₂ O ₃ Nanocomposites. Journal of Nanomaterials, 2015, 2015, 1-13.	1.5	19
31	The Effect of Variable Binder Content and Sintering Temperature on the Mechanical Properties of WC–Co–VC/Cr ₃ C ₂ Nanocomposites. Materials and Manufacturing Processes, 2015, 30, 327-334.	2.7	17
32	Characterization of Ball Milled Ni–Al2O3 Nanocomposite Powders. Powder Metallurgy and Metal Ceramics, 2015, 53, 541-548.	0.4	2
33	Microstructure and Properties of Spark Plasma Sintered Aluminum Containing 1 wt.% SiC Nanoparticles. Metals, 2015, 5, 70-83.	1.0	33
34	Magnesium–nickel composite: Preparation, microstructure andÂmechanical properties. Journal of Alloys and Compounds, 2015, 646, 333-338.	2.8	20
35	Towards sensor array materials: can failure be delayed?. Science and Technology of Advanced Materials, 2015, 16, 034607.	2.8	13
36	Characterization of mechanically milled and spark plasma sintered Al2124-CNT nanocomposites. Science of Sintering, 2015, 47, 119-129.	0.5	7

NOUARI SAHEB

#	Article	IF	CITATIONS
37	The Synthesis of Nanostructured WC-Based Hardmetals Using Mechanical Alloying and Their Direct Consolidation. Journal of Nanomaterials, 2014, 2014, 1-16.	1.5	30
38	Characterization of Nanoreinforcement Dispersion in Inorganic Nanocomposites: A Review. Materials, 2014, 7, 4148-4181.	1.3	33
39	Matrix Structure Evolution and Nanoreinforcement Distribution in Mechanically Milled and Spark Plasma Sintered Al-SiC Nanocomposites. Materials, 2014, 7, 6748-6767.	1.3	27
40	Sintering Behavior of CNT Reinforced Al6061 and Al2124 Nanocomposites. Advances in Materials Science and Engineering, 2014, 2014, 1-9.	1.0	11
41	The effect of annealing on structural and optical properties of α-Fe 2 O 3 /CdS/α-Fe 2 O 3 multilayer heterostructures. Applied Surface Science, 2014, 320, 653-657.	3.1	13
42	VC and Cr3C2 doped WC-based nano-cermets prepared by MA and SPS. Ceramics International, 2014, 40, 11759-11765.	2.3	24
43	Wear and friction behavior of Al6061 alloy reinforced with carbon nanotubes. Wear, 2013, 297, 752-761.	1.5	142
44	Synthesis and spark plasma sintering of Al-Mg-Zr alloys. Journal of Central South University, 2013, 20, 7-14.	1.2	10
45	Spark plasma and microwave sintering of Al6061 and Al2124 alloys. International Journal of Minerals, Metallurgy and Materials, 2013, 20, 152-159.	2.4	47
46	Manufacture of microporous ceramic layer by suspension–sedimentation for filtration applications. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2013, 227, 1032-1038.	1.5	2
47	Age Hardening Behavior of Carbon Nanotube Reinforced Aluminum Nanocomposites. Journal of Nano Research, 2012, 21, 29-35.	0.8	11
48	Spark Plasma Sintering of Metals and Metal Matrix Nanocomposites: A Review. Journal of Nanomaterials, 2012, 2012, 1-13.	1.5	266
49	Thermal analysis of dehydroxylation of Algerian kaolinite. Journal of Thermal Analysis and Calorimetry, 2012, 107, 1067-1072.	2.0	27
50	Wear Behavior of Spark Plasma Sintered Al2124 Aluminum Alloy Containing Carbon Nanotubes. Science of Advanced Materials, 2012, 4, 1166-1173.	0.1	4
51	Phase transformation and sintering behaviour of mullite and mullite–zirconia composite materials. Advances in Applied Ceramics, 2011, 110, 175-180.	0.6	17
52	Spark Plasma Sintering of Mixed and Milled WC-Co Micro-/Nano-Powders. Advanced Materials Research, 2011, 284-286, 537-543.	0.3	4
53	Properties of Mullite-Zirconia Composites Prepared through Reaction Sintering Kaolin, α-Al ₂ O ₃ , and ZrO ₂ . Advanced Materials Research, 2010, 160-162, 1772-1778.	0.3	2
54	Microstructure and Sintering Behavior of Mullite-Zirconia Composites. Materials Science Forum, 2010, 638-642, 979-984.	0.3	6

NOUARI SAHEB

#	Article	IF	CITATIONS
55	Mechanical behavior of mullite-zirconia composites. EPJ Web of Conferences, 2010, 6, 20005.	0.1	3
56	Algerian kaolinite used for mullite formation. Applied Clay Science, 2008, 38, 304-310.	2.6	72
57	Differential thermal analysis of mullite formation from Algerian kaolin. Advances in Applied Ceramics, 2008, 107, 9-13.	0.6	17
58	Processing and characterisation of new nanocrystalline Al _{2O_{3 fly ash composites. International Journal of Microstructure and Materials Properties, 2008, 3, 801.}}	0.1	0
59	Compaction and sintering behaviour of A356–fly ash composites: a preliminary investigation. Powder Metallurgy, 2007, 50, 54-59.	0.9	5
60	PM processing and characterisation of new ZrO2–fly ash composites. Powder Metallurgy, 2007, 50, 60-65.	0.9	3
61	Effect of MgO addition and sintering parameters on mullite formation through reaction sintering kaolin and alumina. Advances in Applied Ceramics, 2006, 105, 285-290.	0.6	17
62	Microstructure and hardness behaviours of Ti-containing Al-Si alloys. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 803-814.	0.8	16
63	Influence of Ti addition on wear properties of Al–Si eutectic alloys. Wear, 2001, 249, 656-662.	1.5	100
64	Cellular precipitation from phase boundaries in Cu-9 wt% Sb alloy. Philosophical Magazine Letters, 1995, 72, 369-374.	0.5	4
65	Different types of discontinuous precipitation in Cu-15 Wt% in alloy. Scripta Metallurgica Et Materialia, 1995, 32, 1453-1458.	1.0	6
66	Optimization of Process Parameters in Spark Plasma Sintering Al6061 and Al2124 Aluminum Alloys. Advanced Materials Research, 0, 328-330, 1517-1522.	0.3	11
67	Compressive Behavior of Spark Plasma Sintered CNT Reinforced Al2124 and Al6061 Nanocomposites. Advanced Materials Research, 0, 652-654, 33-37.	0.3	3