Alvaro San Millan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1698064/publications.pdf

Version: 2024-02-01

47 papers 3,205 citations

236833 25 h-index 233338 45 g-index

55 all docs 55 docs citations

55 times ranked 3041 citing authors

#	Article	IF	CITATIONS
1	Translational demand is not a major source of plasmid-associated fitness costs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200463.	1.8	10
2	The journey of bacterial genes. Nature Ecology and Evolution, 2022, 6, 498-499.	3.4	1
3	Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nature Reviews Microbiology, 2021, 19, 347-359.	13.6	194
4	Collateral sensitivity associated with antibiotic resistance plasmids. ELife, 2021, 10, .	2.8	16
5	Pervasive transmission of a carbapenem resistance plasmid in the gut microbiota of hospitalized patients. Nature Microbiology, 2021, 6, 606-616.	5.9	101
6	Variability of plasmid fitness effects contributes to plasmid persistence in bacterial communities. Nature Communications, 2021, 12, 2653.	5.8	96
7	The bacterial capsule is a gatekeeper for mobile DNA. PLoS Biology, 2021, 19, e3001308.	2.6	3
8	Staphylococcal phages and pathogenicity islands drive plasmid evolution. Nature Communications, 2021, 12, 5845.	5.8	26
9	Mathematical Models of Plasmid Population Dynamics. Frontiers in Microbiology, 2021, 12, 606396.	1.5	14
10	Simulating the Influence of Conjugative-Plasmid Kinetic Values on the Multilevel Dynamics of Antimicrobial Resistance in a Membrane Computing Model. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	11
11	Genetic dominance governs the evolution and spread of mobile genetic elements in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15755-15762.	3.3	41
12	Methods to Study Fitness and Compensatory Adaptation in Plasmid-Carrying Bacteria. Methods in Molecular Biology, 2020, 2075, 371-382.	0.4	17
13	The evolution of antibiotic resistance. Science, 2019, 365, 1082-1083.	6.0	322
14	Transfer dynamics of Tn6648, a composite integrative conjugative element generated by tandem accretion of Tn5801 and Tn6647 in Enterococcus faecalis. Journal of Antimicrobial Chemotherapy, 2019, 74, 2517-2523.	1.3	8
15	Resistencia a antibi $ ilde{A}^3$ ticos: esquivando balas m $ ilde{A}_1$ gicas. Metode, 2019, , .	0.0	0
16	Multicopy plasmids allow bacteria to escape from fitness trade-offs during evolutionary innovation. Nature Ecology and Evolution, 2018, 2, 873-881.	3.4	72
17	Cooperation, competition and antibiotic resistance in bacterial colonies. ISME Journal, 2018, 12, 1582-1593.	4.4	160
18	Testing the Role of Multicopy Plasmids in the Evolution of Antibiotic Resistance. Journal of Visualized Experiments, 2018, , .	0.2	3

#	Article	IF	CITATIONS
19	Evolution of Plasmid-Mediated Antibiotic Resistance in the Clinical Context. Trends in Microbiology, 2018, 26, 978-985.	3.5	284
20	PCR-Based Analysis of ColE1 Plasmids in Clinical Isolates and Metagenomic Samples Reveals Their Importance as Gene Capture Platforms. Frontiers in Microbiology, 2018, 9, 469.	1.5	26
21	Integrative analysis of fitness and metabolic effects of plasmids in <i>Pseudomonas aeruginosa</i> PAO1. ISME Journal, 2018, 12, 3014-3024.	4.4	80
22	Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria. Nature Ecology and Evolution, 2017, 1, 10.	3.4	147
23	A Naturally Occurring Single Nucleotide Polymorphism in a Multicopy Plasmid Produces a Reversible Increase in Antibiotic Resistance. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	35
24	Fitness Costs of Plasmids: a Limit to Plasmid Transmission. Microbiology Spectrum, 2017, 5, .	1.2	312
25	The Genomic Basis of Evolutionary Innovation in Pseudomonas aeruginosa. PLoS Genetics, 2016, 12, e1006005.	1.5	35
26	Evaluating the effect of horizontal transmission on the stability of plasmids under different selection regimes. Mobile Genetic Elements, 2015, 5, 29-33.	1.8	20
27	Sequencing of plasmids pAMBL1 and pAMBL2 from <i>Pseudomonas aeruginosa</i> reveals a <i>bla</i> _{VIM-1} amplification causing high-level carbapenem resistance. Journal of Antimicrobial Chemotherapy, 2015, 70, 3000-3003.	1.3	35
28	Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa. Nature Communications, 2015, 6, 6845.	5.8	147
29	Culturable aerobic and facultative bacteria from the gut of the polyphagic dung beetle <i>Thorectes lusitanicus</i> . Insect Science, 2015, 22, 178-190.	1.5	17
30	Small-Plasmid-Mediated Antibiotic Resistance Is Enhanced by Increases in Plasmid Copy Number and Bacterial Fitness. Antimicrobial Agents and Chemotherapy, 2015, 59, 3335-3341.	1.4	63
31	Microbial Evolution: Towards Resolving the Plasmid Paradox. Current Biology, 2015, 25, R764-R767.	1.8	82
32	Positive epistasis between co-infecting plasmids promotes plasmid survival in bacterial populations. ISME Journal, 2014, 8, 601-612.	4.4	143
33	Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids. Nature Communications, 2014, 5, 5208.	5.8	202
34	SatR Is a Repressor of Fluoroquinolone Efflux Pump SatAB. Antimicrobial Agents and Chemotherapy, 2013, 57, 3430-3433.	1.4	6
35	Fitness Cost and Interference of Arm/Rmt Aminoglycoside Resistance with the RsmF Housekeeping Methyltransferases. Antimicrobial Agents and Chemotherapy, 2012, 56, 2335-2341.	1.4	39
36	Molecular Organization of Small Plasmids Bearing <i>bla</i> _{TEM-1} and Conferring Resistance to l²-Lactams in Haemophilus influenzae. Antimicrobial Agents and Chemotherapy, 2012, 56, 4958-4960.	1.4	14

3

#	Article	IF	CITATIONS
37	ArmA Methyltransferase in a Monophasic Salmonella enterica Isolate from Food. Antimicrobial Agents and Chemotherapy, 2011, 55, 5262-5266.	1.4	26
38	Contribution of ROB-1 and PBP3 mutations to the resistance phenotype of a \hat{l}^2 -lactamase-positive amoxicillin/clavulanic acid-resistant Haemophilus influenzae carrying plasmid pB1000 in Italy. Journal of Antimicrobial Chemotherapy, 2011, 66, 96-99.	1.3	17
39	Fluoroquinolone Efflux in Streptococcus suis Is Mediated by SatAB and Not by SmrA. Antimicrobial Agents and Chemotherapy, 2011, 55, 5850-5860.	1.4	28
40	Plasmid-borne 16S rRNA methylase ArmA in aminoglycoside-resistant Klebsiella pneumoniae in Poland. Journal of Medical Microbiology, 2011, 60, 1306-1311.	0.7	12
41	<i>Haemophilus influenzae</i> Clinical Isolates with Plasmid pB1000 Bearing <i>bla</i> _{ROB-1} : Fitness Cost and Interspecies Dissemination. Antimicrobial Agents and Chemotherapy, 2010, 54, 1506-1511.	1.4	40
42	Novel genetic environment of qnrB2 associated with TEM-1 and SHV-12 on pB1004, an IncHI2 plasmid, in Salmonella Bredeney BB1047 from Spain. Journal of Antimicrobial Chemotherapy, 2009, 64, 1334-1336.	1.3	15
43	VanB-Type Enterococcus faecium Clinical Isolate Successively Inducibly Resistant to, Dependent on, and Constitutively Resistant to Vancomycin. Antimicrobial Agents and Chemotherapy, 2009, 53, 1974-1982.	1.4	20
44	Multiresistance in <i>Pasteurella multocida</i> Is Mediated by Coexistence of Small Plasmids. Antimicrobial Agents and Chemotherapy, 2009, 53, 3399-3404.	1.4	101
45	\hat{l}^2 -Lactam Resistance in Haemophilus parasuis Is Mediated by Plasmid pB1000 Bearing bla ROB-1. Antimicrobial Agents and Chemotherapy, 2007, 51, 2260-2264.	1.4	67
46	First Characterization of Fluoroquinolone Resistance in Streptococcus suis. Antimicrobial Agents and Chemotherapy, 2007, 51, 777-782.	1.4	34
47	Fitness Costs of Plasmids: A Limit to Plasmid Transmission. , 0, , 65-79.		18