Colin F Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/169796/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Venus: key to understanding the evolution of terrestrial planets. Experimental Astronomy, 2022, 54, 575-595.	1.6	2
2	No detection of SO ₂ , H ₂ S, or OCS in the atmosphere of Mars from the first two Martian years of observations from TGO/ACS. Astronomy and Astrophysics, 2022, 658, A86.	2.1	1
3	Seasonal Changes in the Vertical Structure of Ozone in the Martian Lower Atmosphere and Its Relationship to Water Vapor. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	4
4	Seasonal reappearance of HCl in the atmosphere of Mars during the Mars year 35 dusty season. Astronomy and Astrophysics, 2021, 647, A161.	2.1	17
5	Venus Corona and Tessera Explorer (VeCaTEx). , 2021, 53, .		0
6	Upper limits for phosphine (PH ₃) in the atmosphere of Mars. Astronomy and Astrophysics, 2021, 649, L1.	2.1	4
7	lsotopic fractionation of water and its photolytic products in the atmosphere of Mars. Nature Astronomy, 2021, 5, 943-950.	4.2	27
8	Instrumental requirements for the study of Venus' cloud top using the UV imaging spectrometer VeSUV. Advances in Space Research, 2021, 68, 275-291.	1.2	5
9	No evidence of phosphine in the atmosphere of Venus from independent analyses. Nature Astronomy, 2021, 5, 631-635.	4.2	50
10	The vertical structure of CO in the Martian atmosphere from the ExoMars Trace Gas Orbiter. Nature Geoscience, 2021, 14, 67-71.	5.4	30
11	Isotopic Composition of CO ₂ in the Atmosphere of Mars: Fractionation by Diffusive Separation Observed by the ExoMars Trace Gas Orbiter. Journal of Geophysical Research E: Planets, 2021, 126, .	1.5	12
12	Long-duration Venus lander for seismic and atmospheric science. Planetary and Space Science, 2020, 190, 104961.	0.9	13
13	Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season. Science, 2020, 367, 297-300.	6.0	117
14	Oxygen isotopic ratios in Martian water vapour observed by ACS MIR on board the ExoMars Trace Gas Orbiter. Astronomy and Astrophysics, 2019, 630, A91.	2.1	24
15	No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature, 2019, 568, 517-520.	13.7	111
16	Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature, 2019, 568, 521-525.	13.7	107
17	The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter. Space Science Reviews, 2018, 214, 1.	3.7	119
18	Investigations of the Mars Upper Atmosphere with ExoMars Trace Gas Orbiter. Space Science Reviews, 2018, 214, 1.	3.7	13

COLIN F WILSON

#	Article	IF	CITATIONS
19	Editorial: Topical Collection on Venus. Space Science Reviews, 2018, 214, 1.	3.7	2
20	Clouds and Hazes of Venus. Space Science Reviews, 2018, 214, 1.	3.7	95
21	Future of Venus Research and Exploration. Space Science Reviews, 2018, 214, 1.	3.7	79
22	The thermal structure of the Venus atmosphere: Intercomparison of Venus Express and ground based observations of vertical temperature and density profiles. Icarus, 2017, 294, 124-155.	1.1	34
23	A new, fast and flexible radiative transfer method for Venus general circulation models. Planetary and Space Science, 2015, 105, 80-93.	0.9	30
24	Explosive volcanic activity on Venus: The roles of volatile contribution, degassing, and external environment. Planetary and Space Science, 2015, 113-114, 33-48.	0.9	27
25	The CO2 continuum absorption in the 1.10- and 1.18-μm windows on Venus from Maxwell Montes transits by SPICAV IR onboard Venus express. Planetary and Space Science, 2015, 113-114, 66-77.	0.9	23
26	Coordinated Hubble Space Telescope and Venus Express Observations of Venus' upper cloud deck. Icarus, 2015, 258, 309-336.	1.1	35
27	Venus Express: Lessons from Eight Years of Science Operations. , 2015, , 555-578.		Ο
28	Characterizing atmospheric waves on Venus, Earth, and Mars. Eos, 2012, 93, 220-220.	0.1	1
29	EnVision: taking the pulse of our twin planet. Experimental Astronomy, 2012, 33, 337-363.	1.6	23
30	Models of the global cloud structure on Venus derived from Venus Express observations. Icarus, 2012, 217, 542-560.	1.1	95
31	Zonal winds at high latitudes on Venus: An improved application of cyclostrophic balance to Venus Express observations. Icarus, 2012, 217, 629-639.	1.1	9
32	Venus's Southern Polar Vortex Reveals Precessing Circulation. Science, 2011, 332, 577-580.	6.0	54
33	Correlations between cloud thickness and subâ€cloud water abundance on Venus. Geophysical Research Letters, 2010, 37, .	1.5	47
34	Simulating weathering of basalt on Mars and Earth by thermal cycling. Geophysical Research Letters, 2010, 37, .	1.5	54
35	European Venus Explorer (EVE): an in-situ mission to Venus. Experimental Astronomy, 2009, 23, 741-760.	1.6	9
36	Variability of CO concentrations in the Venus troposphere from Venus Express/VIRTIS using a Band Ratio Technique. Icarus, 2009, 201, 432-443.	1.1	24

COLIN F WILSON

#	Article	IF	CITATIONS
37	Analysis of thermal emission from the nightside of Venus at 1.51 and 1.55 μm. Icarus, 2009, 201, 814-817.	1.1	7
38	European Venus Explorer: An in-situ mission to Venus using a balloon platform. Advances in Space Research, 2009, 44, 106-115.	1.2	16
39	The NEMESIS planetary atmosphere radiative transfer and retrieval tool. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 1136-1150.	1.1	415
40	A correlated-k model of radiative transfer in the near-infrared windows of Venus. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 1118-1135.	1.1	37
41	A wind tunnel for the calibration of Mars wind sensors. Planetary and Space Science, 2008, 56, 1532-1541.	0.9	19
42	Variable winds on Venus mapped in three dimensions. Geophysical Research Letters, 2008, 35, .	1.5	119
43	Tropospheric carbon monoxide concentrations and variability on Venus from Venus Express/VIRTISâ€M observations. Journal of Geophysical Research, 2008, 113, .	3.3	37
44	Spatial variability of carbon monoxide in Venus' mesosphere from Venus Express/Visible and Infrared Thermal Imaging Spectrometer measurements. Journal of Geophysical Research, 2008, 113, .	3.3	48
45	Evidence for anomalous cloud particles at the poles of Venus. Journal of Geophysical Research, 2008, 113, .	3.3	38
46	Scientific goals for the observation of Venus by VIRTIS on ESA/Venus express mission. Planetary and Space Science, 2007, 55, 1653-1672.	0.9	155
47	South-polar features on Venus similar to those near the north pole. Nature, 2007, 450, 637-640.	13.7	110
48	The Beagle 2 environmental sensors: science goals and instrument description. Planetary and Space Science, 2004, 52, 1141-1156.	0.9	16