Shakeelur Raheman A R

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1697830/publications.pdf

Version: 2024-02-01

1163117 1125743 12 352 8 13 citations g-index h-index papers 13 13 13 474 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Carbon fabric based solar steam generation for waste water treatment. Solar Energy, 2018, 159, 800-810.	6.1	99
2	Biomass-derived porous carbon for excellent low intensity solar steam generation and seawater desalination. Solar Energy Materials and Solar Cells, 2020, 215, 110604.	6.2	59
3	CdSe quantum dots modified thiol functionalized g-C3N4: Intimate interfacial charge transfer between 0D/2D nanostructure for visible light H2 evolution. Renewable Energy, 2020, 158, 431-443.	8.9	48
4	Valorization of mutant Bacillus licheniformis M09 supernatant for green synthesis of silver nanoparticles: photocatalytic dye degradation, antibacterial activity, and cytotoxicity. Bioprocess and Biosystems Engineering, 2019, 42, 541-553.	3.4	43
5	Plant-derived carbon nanospheres for high efficiency solar-driven steam generation and seawater desalination at low solar intensities. Solar Energy Materials and Solar Cells, 2020, 210, 110489.	6.2	23
6	Recycling of hazardous diesel soot particles into a high performance solar evaporation device. Applied Surface Science, 2019, 487, 951-961.	6.1	22
7	TiO2 nanosheet/ultra-thin layer g-C3N4 core-shell structure: Bifunctional visible-light photocatalyst for H2 evolution and removal of organic pollutants from water. Applied Surface Science, 2020, 528, 146930.	6.1	22
8	Optimal fabrication of 0D/1D Cu2O quantum dots sensitized CdS nanorods heterojunction: Efficient photoredox catalyst for H2 generation under visible light irradiation. Journal of Alloys and Compounds, 2020, 835, 155262.	5 . 5	14
9	Improved electrosorption performance using acid treated electrode scaffold in capacitive deionization. Materials Chemistry and Physics, 2022, 281, 125851.	4.0	7
10	Ultra-high energy stored into multi-layered functional porous carbon tubes enabled by high-rate intercalated pseudocapacitance. Carbon, 2022, 192, 153-161.	10.3	7
11	CdSe quantum dot/white graphene hexagonal porous boron nitride sheet (h-PBNs) heterostructure photocatalyst for solar driven H ₂ production. Journal of Materials Chemistry C, 2021, 9, 8524-8536.	5.5	6
12	Synthesis of metal free ultrathin graphitic carbon nitride sheet for photocatalytic dye degradation of Rhodamine B under visible light irradiation. AIP Conference Proceedings, 2018, , .	0.4	1