Paul A Yushkevich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1697767/publications.pdf

Version: 2024-02-01

186 papers 19,890 citations

57758 44 h-index 130 g-index

196 all docs

196 docs citations

196 times ranked 23826 citing authors

#	Article	IF	CITATIONS
1	User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage, 2006, 31, 1116-1128.	4.2	6,669
2	N4ITK: Improved N3 Bias Correction. IEEE Transactions on Medical Imaging, 2010, 29, 1310-1320.	8.9	4,205
3	Multi-Atlas Segmentation with Joint Label Fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35, 611-623.	13.9	699
4	The optimal template effect in hippocampus studies of diseased populations. NeuroImage, 2010, 49, 2457-2466.	4.2	605
5	Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment. Human Brain Mapping, 2015, 36, 258-287.	3.6	454
6	Deformable registration of diffusion tensor MR images with explicit orientation optimization. Medical Image Analysis, 2006, 10, 764-785.	11.6	453
7	Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: Towards a harmonized segmentation protocol. Neurolmage, 2015, 111, 526-541.	4.2	284
8	Segmentation, registration, and measurement of shape variation via image object shape. IEEE Transactions on Medical Imaging, 1999, 18, 851-865.	8.9	268
9	High-Dimensional Spatial Normalization of Diffusion Tensor Images Improves the Detection of White Matter Differences: An Example Study Using Amyotrophic Lateral Sclerosis. IEEE Transactions on Medical Imaging, 2007, 26, 1585-1597.	8.9	250
10	ITK-SNAP: An interactive tool for semi-automatic segmentation of multi-modality biomedical images. , 2016, 2016, 3342-3345.		250
11	Nearly automatic segmentation of hippocampal subfields in in vivo focal T2-weighted MRI. NeuroImage, 2010, 53, 1208-1224.	4.2	222
12	Deformable M-Reps for 3D Medical Image Segmentation. International Journal of Computer Vision, 2003, 55, 85-106.	15.6	202
13	Multi-atlas segmentation with joint label fusion and corrective learning—an open source implementation. Frontiers in Neuroinformatics, 2013, 7, 27.	2.5	188
14	A learning-based wrapper method to correct systematic errors in automatic image segmentation: Consistently improved performance in hippocampus, cortex and brain segmentation. NeuroImage, 2011, 55, 968-985.	4.2	162
15	A high-resolution computational atlas of the human hippocampus from postmortem magnetic resonance imaging at 9.4ÂT. Neurolmage, 2009, 44, 385-398.	4.2	160
16	Structure-specific statistical mapping of white matter tracts. Neurolmage, 2008, 41, 448-461.	4.2	158
17	Characterizing the human hippocampus in aging and Alzheimer's disease using a computational atlas derived from ex vivo MRI and histology. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4252-4257.	7.1	136
18	Histology-derived volumetric annotation of the human hippocampal subfields in postmortem MRI. NeuroImage, 2014, 84, 505-523.	4.2	133

#	Article	lF	Citations
19	A harmonized segmentation protocol for hippocampal and parahippocampal subregions: Why do we need one and what are the key goals?. Hippocampus, 2017, 27, 3-11.	1.9	130
20	Continuous Medial Representation for Anatomical Structures. IEEE Transactions on Medical Imaging, 2006, 25, 1547-1564.	8.9	119
21	Bias in estimation of hippocampal atrophy using deformation-based morphometry arises from asymmetric global normalization: An illustration in ADNI 3 T MRI data. NeuroImage, 2010, 50, 434-445.	4.2	116
22	Multiscale deformable model segmentation and statistical shape analysis using medial descriptions. IEEE Transactions on Medical Imaging, 2002, 21, 538-550.	8.9	112
23	A protocol for manual segmentation of medial temporal lobe subregions in 7 Tesla MRI. NeuroImage: Clinical, 2017, 15, 466-482.	2.7	111
24	Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome. Journal of Medical Imaging, 2018, 5, 1.	1.5	110
25	Neuroinformatics for Genome-Wide 3-D Gene Expression Mapping in the Mouse Brain. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2007, 4, 382-393.	3.0	109
26	In vivo Analysis of Hippocampal Subfield Atrophy in Mild Cognitive Impairment via Semi-Automatic Segmentation of T2-Weighted MRI. Journal of Alzheimer's Disease, 2012, 31, 85-99.	2.6	99
27	User-Guided Segmentation of Multi-modality Medical Imaging Datasets with ITK-SNAP. Neuroinformatics, 2019, 17, 83-102.	2.8	97
28	ITK-SNAP: An Intractive Medical Image Segmentation Tool to Meet the Need for Expert-Guided Segmentation of Complex Medical Images. IEEE Pulse, 2017, 8, 54-57.	0.3	96
29	Hippocampal subfield volumetry from structural isotropic 1 mm ³ <scp>MRI</scp> scans: A note of caution. Human Brain Mapping, 2021, 42, 539-550.	3.6	84
30	Increased functional connectivity within medial temporal lobe in mild cognitive impairment. Hippocampus, 2013, 23, 1-6.	1.9	79
31	Early stages of tau pathology and its associations with functional connectivity, atrophy and memory. Brain, 2021, 144, 2771-2783.	7.6	78
32	ANHIR: Automatic Non-Rigid Histological Image Registration Challenge. IEEE Transactions on Medical Imaging, 2020, 39, 3042-3052.	8.9	75
33	Automated segmentation of medial temporal lobe subregions on in vivo T1â€weighted MRI in early stages of Alzheimer's disease. Human Brain Mapping, 2019, 40, 3431-3451.	3.6	71
34	Fully automatic segmentation of the mitral leaflets in 3D transesophageal echocardiographic images using multi-atlas joint label fusion and deformable medial modeling. Medical Image Analysis, 2014, 18, 118-129.	11.6	70
35	Medial temporal lobe subregional morphometry using high resolution MRI in Alzheimer's disease. Neurobiology of Aging, 2017, 49, 204-213.	3.1	70
36	Unbiased White Matter Atlas Construction Using Diffusion Tensor Images. , 2007, 10, 211-218.		66

#	Article	IF	CITATIONS
37	Automated Hippocampal Subfield Segmentation at 7T MRI. American Journal of Neuroradiology, 2016, 37, 1050-1057.	2.4	66
38	Suspected non-AD pathology in mild cognitive impairment. Neurobiology of Aging, 2015, 36, 3152-3162.	3.1	63
39	Assessing atrophy measurement techniques in dementia: Results from the MIRIAD atrophy challenge. NeuroImage, 2015, 123, 149-164.	4.2	63
40	Cerebral cortical folding analysis with multivariate modeling and testing: Studies on gender differences and neonatal development. Neurolmage, 2010, 53, 450-459.	4.2	62
41	Longitudinal and cross-sectional structural magnetic resonance imaging correlates of AV-1451 uptake. Neurobiology of Aging, 2018, 66, 49-58.	3.1	61
42	Mapping the structural and functional network architecture of the medial temporal lobe using 7T MRI. Human Brain Mapping, 2018, 39, 851-865.	3.6	60
43	Continuous medial representations for geometric object modeling in 2D and 3D. Image and Vision Computing, 2003, 21, 17-27.	4.5	59
44	Systematic comparison of different techniques to measure hippocampal subfield volumes in ADNI2. NeuroImage: Clinical, 2018, 17, 1006-1018.	2.7	56
45	Preoperative Three-Dimensional Valve Analysis Predicts Recurrent Ischemic Mitral Regurgitation After Mitral Annuloplasty. Annals of Thoracic Surgery, 2016, 101, 567-575.	1.3	53
46	A tract-specific framework for white matter morphometry combining macroscopic and microscopic tract features. Medical Image Analysis, 2010, 14, 666-673.	11.6	52
47	Regression-based label fusion for multi-atlas segmentation. , 2011, , 1113-1120.		49
48	Structural and functional asymmetry of medial temporal subregions in unilateral temporal lobe epilepsy: A 7T MRI study. Human Brain Mapping, 2019, 40, 2390-2398.	3.6	49
49	White matter imaging contributes to the multimodal diagnosis of frontotemporal lobar degeneration. Neurology, 2012, 78, 1761-1768.	1.1	48
50	Anterior and posterior MTL networks in aging and MCI. Neurobiology of Aging, 2015, 36, S141-S150.e1.	3.1	44
51	Contribution of mixed pathology to medial temporal lobe atrophy in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, 843-852.	0.8	43
52	ICâ€Pâ€174: Fast Automatic Segmentation of Hippocampal Subfields and Medial Temporal Lobe Subregions In 3 Tesla and 7 Tesla T2â€Weighted MRI. Alzheimer's and Dementia, 2016, 12, P126.	0.8	42
53	Semi-automated mitral valve morphometry and computational stress analysis using 3D ultrasound. Journal of Biomechanics, 2012, 45, 903-907.	2.1	41
54	Neural Correlates of Verbal Episodic Memory and Lexical Retrieval in Logopenic Variant Primary Progressive Aphasia. Frontiers in Neuroscience, 2017, 11, 330.	2.8	38

#	Article	IF	CITATIONS
55	Three-dimensional mapping of neurofibrillary tangle burden in the human medial temporal lobe. Brain, 2021, 144, 2784-2797.	7.6	38
56	Continuous medial representation of brain structures using the biharmonic PDE. NeuroImage, 2009, 45, S99-S110.	4.2	37
57	Maturation Along White Matter Tracts in Human Brain Using a Diffusion Tensor Surface Model Tract-Specific Analysis. Frontiers in Neuroanatomy, 2016, 10, 9.	1.7	37
58	Hippocampal volumetry and functional MRI of memory in temporal lobe epilepsy. Epilepsy and Behavior, 2009, 16, 128-138.	1.7	35
59	Measuring longitudinal change in the hippocampal formation from in vivo high-resolution T2-weighted MRI. Neurolmage, 2012, 60, 1266-1279.	4.2	35
60	A tract-specific approach to assessing white matter in preterm infants. Neurolmage, 2017, 157, 675-694.	4.2	35
61	Progress update from the hippocampal subfields group. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 439-449.	2.4	34
62	Longitudinal atrophy in early Braak regions in preclinical Alzheimer's disease. Human Brain Mapping, 2020, 41, 4704-4717.	3.6	34
63	The Cancer Imaging Phenomics Toolkit (CaPTk): Technical Overview. Lecture Notes in Computer Science, 2020, 11993, 380-394.	1.3	34
64	White Matter Disease Contributes to Apathy and Disinhibition in Behavioral Variant Frontotemporal Dementia. Cognitive and Behavioral Neurology, 2014, 27, 206-214.	0.9	33
65	In-vivo heterogeneous functional and residual strains in human aortic valve leaflets. Journal of Biomechanics, 2016, 49, 2481-2490.	2.1	32
66	Optimal Weights for Multi-atlas Label Fusion. Lecture Notes in Computer Science, 2011, 22, 73-84.	1.3	32
67	Multi-atlas Segmentation with Robust Label Transfer and Label Fusion. Lecture Notes in Computer Science, 2013, 23, 548-559.	1.3	32
68	Characterization of hippocampal subfields using ex vivo MRI and histology data: Lessons for in vivo segmentation. Hippocampus, 2020, 30, 545-564.	1.9	31
69	A brain stress test: Cerebral perfusion during memory encoding in mild cognitive impairment. NeuroImage: Clinical, 2016, 11, 388-397.	2.7	30
70	Multi-template analysis of human perirhinal cortex in brain MRI: Explicitly accounting for anatomical variability. NeuroImage, 2017, 144, 183-202.	4.2	30
71	Development of a semi-automated method for mitral valve modeling with medial axis representation using 3D ultrasound. Medical Physics, 2012, 39, 933-950.	3.0	29
72	White Matter Disease Correlates with Lexical Retrieval Deficits in Primary Progressive Aphasia. Frontiers in Neurology, 2013, 4, 212.	2.4	29

#	Article	IF	CITATIONS
73	Early Tau Burden Correlates with Higher Rate of Atrophy in Transentorhinal Cortex. Journal of Alzheimer's Disease, 2018, 62, 85-92.	2.6	29
74	Quantitative MRI of Perivascular Spaces at 3T for Early Diagnosis of Mild Cognitive Impairment. American Journal of Neuroradiology, 2018, 39, 1622-1628.	2.4	29
75	Hippocampus-specific fMRI group activation analysis using the continuous medial representation. Neurolmage, 2007, 35, 1516-1530.	4.2	28
76	Robust Automated Amygdala Segmentation via Multi-Atlas Diffeomorphic Registration. Frontiers in Neuroscience, 2012, 6, 166.	2.8	28
77	Multi-atlas Segmentation without Registration: A Supervoxel-Based Approach. Lecture Notes in Computer Science, 2013, 16, 535-542.	1.3	28
78	Automatic Cardiac MRI Segmentation Using a Biventricular Deformable Medial Model. Lecture Notes in Computer Science, 2010, 13, 468-475.	1.3	26
79	Medially constrained deformable modeling for segmentation of branching medial structures: Application to aortic valve segmentation and morphometry. Medical Image Analysis, 2015, 26, 217-231.	11.6	26
80	The value of preoperative 3-dimensional over 2-dimensional valve analysis in predicting recurrent ischemic mitral regurgitation after mitral annuloplasty. Journal of Thoracic and Cardiovascular Surgery, 2016, 152, 847-859.	0.8	26
81	Intuitive, Localized Analysis of Shape Variability. Lecture Notes in Computer Science, 2001, , 402-408.	1.3	26
82	Feature Selection for Shape-Based Classification of Biological Objects. Lecture Notes in Computer Science, 2003, 18, 114-125.	1.3	25
83	Statistical Assessment of Normal Mitral Annular Geometry Using Automated Three-Dimensional Echocardiographic Analysis. Annals of Thoracic Surgery, 2014, 97, 71-77.	1.3	25
84	Structure-Specific Statistical Mapping of White Matter Tracts using the Continuous Medial Representation., 2007,,.		24
85	Structure specific analysis of the hippocampus in temporal lobe epilepsy. Hippocampus, 2009, 19, 517-525.	1.9	24
86	InÂvivo measures of tau burden are associated with atrophy in early Braak stage medial temporal lobe regions in amyloidâ€negative individuals. Alzheimer's and Dementia, 2019, 15, 1286-1295.	0.8	24
87	Medial Temporal Lobe Networks in Alzheimer's Disease: Structural and Molecular Vulnerabilities. Journal of Neuroscience, 2022, 42, 2131-2141.	3.6	23
88	3D Cerebral Cortical Morphometry in Autism: Increased Folding in Children and Adolescents in Frontal, Parietal, and Temporal Lobes. Lecture Notes in Computer Science, 2008, 11, 559-567.	1.3	22
89	Accounting for the Confound of Meninges in Segmenting Entorhinal and Perirhinal Cortices in T1-Weighted MRI. Lecture Notes in Computer Science, 2016, 9901, 564-571.	1.3	21
90	Regional Structural Characterization of the Brain of Schizophrenia Patients1. Academic Radiology, 2005, 12, 1250-1261.	2.5	20

#	Article	IF	CITATIONS
91	Quantification of Left Ventricular Function With Premature Ventricular Complexes Reveals Variable Hemodynamics. Circulation: Arrhythmia and Electrophysiology, 2016, 9, e003520.	4.8	20
92	Longitudinal Changes in Hippocampal Subfield Volume Associated with Collegiate Football. Journal of Neurotrauma, 2019, 36, 2762-2773.	3.4	20
93	User-initialized active contour segmentation and golden-angle real-time cardiovascular magnetic resonance enable accurate assessment of LV function in patients with sinus rhythm and arrhythmias. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 37.	3.3	19
94	Tauâ€Atrophy Variability Reveals Phenotypic Heterogeneity in Alzheimer's Disease. Annals of Neurology, 2021, 90, 751-762.	5.3	19
95	Shape-Based Normalization of the Corpus Callosum for DTI Connectivity Analysis. IEEE Transactions on Medical Imaging, 2007, 26, $1166-1178$.	8.9	18
96	Heterogeneity of functional activation during memory encoding across hippocampal subfields in temporal lobe epilepsy. NeuroImage, 2011, 58, 1121-1130.	4.2	18
97	Real-Time Magnetic Resonance Imaging TechniqueÂfor Determining Left Ventricle Pressure-Volume Loops. Annals of Thoracic Surgery, 2014, 97, 1597-1603.	1.3	18
98	Multivariate High-Dimensional Cortical Folding Analysis, Combining Complexity and Shape, in Neonates with Congenital Heart Disease. Lecture Notes in Computer Science, 2009, 21, 552-563.	1.3	18
99	Image Segmentation and Modeling of the Pediatric Tricuspid Valve in Hypoplastic Left Heart Syndrome. Lecture Notes in Computer Science, 2017, 10263, 95-105.	1.3	17
100	A Computational White Matter Atlas for Aging with Surface-Based Representation of Fasciculi. Lecture Notes in Computer Science, 2010, , 83-90.	1.3	17
101	Groupwise Segmentation with Multi-atlas Joint Label Fusion. Lecture Notes in Computer Science, 2013, 16, 711-718.	1.3	17
102	Ex vivo MRI and histopathology detect novel iron-rich cortical inflammation in frontotemporal lobar degeneration with tau versus TDP-43 pathology. NeuroImage: Clinical, 2022, 33, 102913.	2.7	17
103	Neural and behavioral correlates of episodic memory are associated with temporal discounting in older adults. Neuropsychologia, 2020, 146, 107549.	1.6	16
104	Automated Segmentation and Geometrical Modeling of the Tricuspid Aortic Valve in 3D Echocardiographic Images. Lecture Notes in Computer Science, 2013, 16, 485-492.	1.3	16
105	From label fusion to correspondence fusion: A new approach to unbiased groupwise registration. , 2012, , 956-963.		14
106	Clinical validation of automated hippocampal segmentation in temporal lobe epilepsy. NeuroImage: Clinical, 2018, 20, 1139-1147.	2.7	14
107	Ex vivo MRI atlas of the human medial temporal lobe: characterizing neurodegeneration due to tau pathology. Acta Neuropathologica Communications, 2021, 9, 173.	5.2	14
108	Relationship of Contextual Cueing and Hippocampal Volume in Amnestic Mild Cognitive Impairment Patients and Cognitively Normal Older Adults. Journal of the International Neuropsychological Society, 2015, 21, 285-296.	1.8	12

#	Article	IF	CITATIONS
109	Cardiac Medial Modeling and Time-Course Heart Wall Thickness Analysis. Lecture Notes in Computer Science, 2008, 11, 766-773.	1.3	12
110	Deformable Modeling Using a 3D Boundary Representation with Quadratic Constraints on the Branching Structure of the Blum Skeleton. Lecture Notes in Computer Science, 2013, 23, 280-291.	1.3	12
111	Automated Multi-Atlas Segmentation of Hippocampal and Extrahippocampal Subregions in Alzheimer's Disease at 3T and 7T: What Atlas Composition Works Best?. Journal of Alzheimer's Disease, 2018, 63, 217-225.	2.6	11
112	Taskâ€enhanced arterial spin labeled perfusion MRI predicts longitudinal neurodegeneration in mild cognitive impairment. Hippocampus, 2019, 29, 26-36.	1.9	11
113	Associative memory for conceptually unitized word pairs in mild cognitive impairment is related to the volume of the perirhinal cortex. Hippocampus, 2019, 29, 630-638.	1.9	11
114	ND morphological contour interpolation. The Insight Journal, 2016, , .	0.2	11
115	Dissociation of tau pathology and neuronal hypometabolism within the ATN framework of Alzheimer's disease. Nature Communications, 2022, 13, 1495.	12.8	11
116	Spatial bias in multi-atlas based segmentation. , 2012, 2012, 909-916.		10
117	Modeling the Myxomatous Mitral Valve With Three-Dimensional Echocardiography. Annals of Thoracic Surgery, 2016, 102, 703-710.	1.3	9
118	Clinical Application of Automatic Segmentation of Medial Temporal Lobe Subregions in Prodromal and Dementia-Level Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 54, 1027-1037.	2.6	9
119	Self-gated MRI of multiple beat morphologies in the presence of arrhythmias. Magnetic Resonance in Medicine, 2017, 78, 678-688.	3.0	9
120	Automatic Clustering and Thickness Measurement of Anatomical Variants of the Human Perirhinal Cortex. Lecture Notes in Computer Science, 2014, 17, 81-88.	1.3	9
121	Shape-Based Alignment of Hippocampal Subfields: Evaluation in Postmortem MRI. Lecture Notes in Computer Science, 2008, 11, 510-517.	1.3	9
122	Gradient Boosted Trees for Corrective Learning. Lecture Notes in Computer Science, 2017, 10541, 203-211.	1.3	8
123	Accurate and Robust Alignment of Differently Stained Histologic Images Based on Greedy Diffeomorphic Registration. Applied Sciences (Switzerland), 2021, 11, 1892.	2.5	8
124	Tau pathology mediates age effects on medial temporal lobe structure. Neurobiology of Aging, 2022, 109, 135-144.	3.1	8
125	A Tract-Specific Framework for White Matter Morphometry Combining Macroscopic and Microscopic Tract Features. Lecture Notes in Computer Science, 2009, 12, 141-149.	1.3	8
126	Parametric Medial Shape Representation in 3-D via the Poisson Partial Differential Equation with Non-linear Boundary Conditions. Lecture Notes in Computer Science, 2005, 19, 162-173.	1.3	7

#	Article	IF	Citations
127	3D mesh based wall thickness measurement: Identification of left ventricular hypertrophy phenotypes. , 2010, 2010, 2642-5.		7
128	Reconstruction of the human hippocampus in 3D from histology and high-resolution ex-vivo MRI. , 2012, 2012, 294-297.		7
129	Segmentation of the Aortic Valve Apparatus in 3D Echocardiographic Images: Deformable Modeling of a Branching Medial Structure. Lecture Notes in Computer Science, 2015, 8896, 196-203.	1.3	7
130	Dependency prior for multi-atlas label fusion. , 2012, 2012, 892-895.		6
131	3D Mapping of TAU Neurofibrillary Tangle Pathology in the Human Medial Temporal Lobe. , 2020, , .		6
132	Oh brother, where art tau? Amyloid, neurodegeneration, and cognitive decline without elevated tau. NeuroImage: Clinical, 2021, 31, 102717.	2.7	6
133	DeepAtrophy: Teaching a neural network to detect progressive changes in longitudinal MRI of the hippocampal region in Alzheimer's disease. Neurolmage, 2021, 243, 118514.	4.2	6
134	Minimally interactive placenta segmentation from three-dimensional ultrasound images. Journal of Medical Imaging, 2020, 7, 1.	1.5	6
135	Statistical Modeling of Shape and Appearance Using the Continuous Medial Representation. Lecture Notes in Computer Science, 2005, 8, 725-732.	1.3	6
136	Standing on the Shoulders of Giants: Improving Medical Image Segmentation via Bias Correction. Lecture Notes in Computer Science, 2010, 13, 105-112.	1.3	5
137	Globally Optimal Label Fusion with Shape Priors. Lecture Notes in Computer Science, 2016, 9901, 538-546.	1.3	5
138	TAPAS: A Thresholding Approach for Probability Map Automatic Segmentation in Multiple Sclerosis. NeuroImage: Clinical, 2020, 27, 102256.	2.7	5
139	Cross-sectional and longitudinal medial temporal lobe subregional atrophy patterns in semantic variant primary progressive aphasia. Neurobiology of Aging, 2021, 98, 231-241.	3.1	5
140	Improving Multi-atlas Segmentation by Convolutional Neural Network Based Patch Error Estimation. Lecture Notes in Computer Science, 2019, , 347-355.	1.3	5
141	Dice Overlap Measures for Objects of Unknown Number: Application to Lesion Segmentation. Lecture Notes in Computer Science, 2018, 10670, 3-14.	1.3	5
142	Gender Differences in Cerebral Cortical Folding: Multivariate Complexity-Shape Analysis with Insights into Handling Brain-Volume Differences. Lecture Notes in Computer Science, 2009, 12, 200-207.	1.3	5
143	Branching medial models for cardiac shape representation. , 2008, , .		4
144	Hippocampus segmentation using a stable maximum likelihood classifier ensemble algorithm., 2011,,.		4

#	Article	IF	Citations
145	Multi-atlas label fusion with augmented atlases for fast and accurate segmentation of cardiac MR images. , $2015, , .$		4
146	Spatiotemporal Segmentation and Modeling of the Mitral Valve in Real-Time 3D Echocardiographic Images. Lecture Notes in Computer Science, 2017, 10433, 746-754.	1.3	4
147	Intraoperative post-annuloplasty three-dimensional valve analysis does not predict recurrent ischemic mitral regurgitation. Journal of Cardiothoracic Surgery, 2020, 15, 161.	1.1	4
148	Fully Automated Placental Volume Quantification From <scp>3D</scp> Ultrasound for Prediction of Smallâ€forâ€Gestationalâ€Age Infants. Journal of Ultrasound in Medicine, 2022, 41, 1509-1524.	1.7	4
149	4D-transesophageal echocardiography and emerging imaging modalities for guiding mitral valve repair. Annals of Cardiothoracic Surgery, 2015, 4, 461-2.	1.7	4
150	Structure-Specific Statistical Mapping of White Matter Tracts. Mathematics and Visualization, 2009, , 83-112.	0.6	4
151	Characterizing Anatomical Variability and Alzheimer's Disease Related Cortical Thinning in the Medial Temporal Lobe Using Graph-Based Groupwise Registration and Point Set Geodesic Shooting. Lecture Notes in Computer Science, 2018, 11167, 28-37.	1.3	4
152	Self- and Partner-Reported Subjective Memory Complaints: Association with Objective Cognitive Impairment and Risk of Decline. Journal of Alzheimer's Disease Reports, 2022, 6, 411-430.	2.2	4
153	Building an Ex Vivo Atlas of the Earliest Brain Regions Affected by Alzheimer's Disease Pathology. , 2020, , .		3
154	Joint Intensity Fusion Image Synthesis Applied to Multiple Sclerosis Lesion Segmentation. Lecture Notes in Computer Science, 2018, , 43-54.	1.3	3
155	Anatomy-Based Visualizations of Diffusion Tensor Images of Brain White Matter. Mathematics and Visualization, 2006, , 155-163.	0.6	3
156	Building an atlas of hippocampal subfields using postmortem MRI., 2008,,.		2
157	A framework for informing segmentation of in vivo MRI with information derived from ex vivo imaging: Application in the medial temporal lobe., 2016, 2016, 6014-6017.		2
158	Automated Meshing of Anatomical Shapes for Deformable Medial Modeling: Application to the Placenta in 3D Ultrasound. , 2020, , .		2
159	Automatic Segmentation of Bone Selective MR Images for Visualization and Craniometry of the Cranial Vault. Academic Radiology, 2022, 29, S98-S106.	2.5	2
160	Sensitive Measures of Cognition in Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2021, 82, 1123-1136.	2.6	2
161	Probabilistic Atlas of the Human Hippocampus Combining Ex Vivo MRI and Histology. Lecture Notes in Computer Science, 2016, , 63-71.	1.3	2
162	Tensor-Based Morphometry of Fibrous Structures with Application to Human Brain White Matter. Lecture Notes in Computer Science, 2009, 12, 466-473.	1.3	2

#	Article	IF	CITATIONS
163	Guiding Automatic Segmentation with Multiple Manual Segmentations. Lecture Notes in Computer Science, 2012, 15, 429-436.	1.3	2
164	Joint Intensity Fusion Image Synthesis Applied to Multiple Sclerosis Lesion Segmentation., 2018, 10670, 43-54.		2
165	Surface-based modeling of white matter fasciculi with orientation encoding. , 2008, , .		1
166	Ventricularwall thickness analysis in acute myocardial infarction and hypertrophic cardiomyopathy. , 2009, , .		1
167	Shape-based semi-automatic hippocampal subfield segmentation with learning-based bias removal. , 2010, , .		1
168	Guest editorial. Neurobiology of Aging, 2015, 36, S1-S2.	3.1	1
169	Deep Label Fusion: A 3D End-To-End Hybrid Multi-atlas Segmentation and Deep Learning Pipeline. Lecture Notes in Computer Science, 2021, , 428-439.	1.3	1
170	Multiple Sclerosis Lesion Segmentation Using Joint Label Fusion. Lecture Notes in Computer Science, 2017, 10530, 138-145.	1.3	1
171	Hippocampus-Specific fMRI Group Activation Analysis with Continuous M-Reps. Lecture Notes in Computer Science, 2006, 9, 284-291.	1.3	1
172	RLEImage: run-length encoded memory compression scheme for an itk::Image. The Insight Journal, 2016, , .	0.2	1
173	Early stages of tau pathology and its associations with functional connectivity, atrophy and memory. Alzheimer's and Dementia, $2021,17,.$	0.8	1
174	Fully Automated 3D Segmentation and Diffeomorphic Medial Modeling of the Left Ventricle Mitral Valve Complex in Ischemic Mitral Regurgitation. Medical Image Analysis, 2022, 80, 102513.	11.6	1
175	NON-UNIFORM SMOOTHING IN HIPPOCAMPUS-SPECIFIC GROUP FMRI ANALYSIS. , 2007, , .		0
176	Spatial correspondence based asymmetry analysis in FMRI., 2008,,.		0
177	Fully automatic segmentation of the open mitral leaflets in 3D transesophageal echocardiographic images using multi-atlas label fusion and deformable medial modeling. , 2012, , .		0
178	Dynamic shape modeling of the mitral valve from real-time 3D ultrasound images using continuous medial representation. , 2012 , , .		0
179	Supervoxel-Based Hierarchical Markov Random Field Framework for Multi-atlas Segmentation. Lecture Notes in Computer Science, 2016, , 100-108.	1.3	0
180	Quantitative threeâ€dimensional echocardiographic analysis of the bicuspid aortic valve and aortic root: A single modality approach. Journal of Cardiac Surgery, 2020, 35, 375-382.	0.7	0

#	Article	IF	CITATIONS
181	Multimodal image analysis and subvalvular dynamics in ischemic mitral regurgitation. JTCVS Open, 2021, 5, 48-60.	0.5	O
182	Diffeomorphic Medial Modeling. Lecture Notes in Computer Science, 2019, 11492, 208-220.	1.3	0
183	Semi-automated Image Segmentation of the Midsystolic Left Ventricular Mitral Valve Complex in Ischemic Mitral Regurgitation. Lecture Notes in Computer Science, 2019, 11395, 142-151.	1.3	O
184	Evaluation of Shape-Based Normalization in the Corpus Callosum for White Matter Connectivity Analysis., 2007, 10, 777-784.		0
185	Live-Wire-ing the Insight Toolkit with Intelligent Scissors. The Insight Journal, 2009, , .	0.2	O
186	Regional distribution of tau pathology in subfields of hippocampus among phenotypic variants of AD and FTLD-tau Alzheimer's and Dementia, 2021, 17 Suppl 3, e052392.	0.8	0