Takeshi Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1697715/publications.pdf

Version: 2024-02-01

516710 610901 36 604 16 24 h-index citations g-index papers 37 37 37 437 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 17, 173-184.	2.4	55
2	Macroporous Morphology of the Titania Films Prepared by a Sol-Gel Dip-Coating Method from the System Containing Poly(Ethylene Glycol). I. Effect of Humidity. Journal of Sol-Gel Science and Technology, 1998, 12, 185-192.	2.4	42
3	Preparation of Glass-Ceramics Containing Ferrimagnetic Zinc-Iron Ferrite for the Hyperthermal Treatment of Cancer. Journal of the Ceramic Society of Japan, 2004, 112, 373-379.	1.3	42
4	Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 19, 219-222.	2.4	36
5	Macroporous Morphology of the Titania Films Prepared by a Sol-Gel Dip-Coating Method from the System Containing Poly(Ethylene Glycol). II. Effect of Solution Composition. Journal of Sol-Gel Science and Technology, 1998, 12, 193-201.	2.4	33
6	Novel Method for Zirconium Oxide Synthesis from Aqueous Solution. Journal of the American Ceramic Society, 1996, 79, 3329-3330.	3.8	29
7	Relaxation structure analysis of Li inserted Î ³ -Fe2O3. Solid State Ionics, 2011, 203, 29-32.	2.7	29
8	Title is missing!. Journal of Sol-Gel Science and Technology, 1999, 16, 257-266.	2.4	25
9	Preparation of Magnetite-Containing Glass-Ceramics in Controlled Atmosphere for Hyperthermia of Cancer Journal of the Ceramic Society of Japan, 2001, 109, 39-44.	1.3	25
10	Synthesis of LaMeO ₃ (Me = Cr, Mn, Fe, Co) Perovskite Oxides from Aqueous Solutions. Journal of the American Ceramic Society, 1997, 80, 2441-2444.	3.8	23
11	Crystal Structure of (Ba ₁₋ <i>_x</i> La <i>_x</i>) _{>31-533.}	ki a‰ tib>x	<b 28b>
12	Relaxation Crystal Analysis of LiFePO4 Cathode for Li-lon Secondary Battery. Electrochemical and Solid-State Letters, 2012, 15, A49.	2.2	22
13	Physical Properties and Structure of rfâ€Sputtered Amorphous Films in the System Al ₂ O ₃ . Journal of the American Ceramic Society, 2002, 85, 915-920.	3.8	20
14	Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 17, 239-245.	2.4	19
15	Relaxation Analysis of Li _x NiO ₂ and Li _x (NCA)O ₂ in the Deeply Lithium Extracted Region (x amounts). Journal of the Electrochemical Society, 2017, 164, A1514-A1519.	2.9	18
16	Collapse of thela3 \hat{A}^- dcubic symmetry by uniaxial stretching of a double-gyroid block copolymer. Physical Review E, 2001, 63, 061803.	2.1	17
17	Synthesis of functional ceramic materials from aqueous solutions. Journal of Materials Research, 1998, 13, 1091-1098.	2.6	16
18	Multistage Li Insertion and Extraction Relaxation Analysis of ^ ^gamma;-Fe2O3. Electrochemistry, 2012, 80, 804-807.	1.4	14

#	Article	IF	CITATIONS
19	Relaxation analysis of LiMnPO4-based olivine-type material. Solid State Ionics, 2014, 262, 35-38.	2.7	13
20	Effect of Doubled Sandblasting Process and Basic Simulated Body Fluid Treatment on Fabrication of Bioactive Stainless Steels. Materials, 2018, 11, 1334.	2.9	13
21	Electrical Property, Crystal Structure and Oxygen Nonstoichiometry of La ₁₋ _{Sr<i>_x</i>Sr<i>_x</i>Sr<i>_x</i>_{&}}}	gt;Qo <sı< td=""><td>ub&gt;0.2&lc</td></sı<>	ub &g t;0.2&lc
22	Relaxation Structure Analysis of the Single-Phase Reaction of LiMn _{0.75} Fe _{0.25} PO ₄ . Journal of the Electrochemical Society, 2014, 161, A1759-A1763.	2.9	11
23	Relaxation Analysis of LiNi _{0.5} Mn _{1.5} O ₄ 5 V Cathode Material by Means of the Rietveld Refinement. Electrochemistry, 2016, 84, 808-811.	1.4	10
24	Defect Structure and Oxide Ion Conduction of Potassium Ion Substituted CaWO4. Materials, 2018, 11, 1092.	2.9	10
25	α-PbO ₂ Formation on the Cathode of Lead Acid Battery due to the Local Cell Reaction. Journal of the Electrochemical Society, 2016, 163, A3087-A3090.	2.9	9
26	Structural Relaxation of Lix(Ni0.874Co0.090Al0.036)O2 after Lithium Extraction down to $x = 0.12$. Materials, 2018, 11, 1299.	2.9	9
27	Formation of Titania Submicrometer Patterns by the Combination of Synthesis from an Aqueous Solution and Transcription of a Resist Pattern. Journal of the American Ceramic Society, 2003, 86, 1976-1978.	3.8	6
28	Relaxation Analysis of Li _x 0.8Co _{0.1} Mn _{0.1} O ₂ after Lithium Extraction to High-Voltage Region (x ≠0.12). Journal of the Electrochemical Society, 2021, 168, 010518.	2.9	4
29	THE EFFECTS OF SBF CONDITIONS ON ENCAPSULATION OF AGAROSE GEL WITH HYDROXYAPATITE MICROCAPSULES. Phosphorus Research Bulletin, 2016, 31, 9-14.	0.6	3
30	EFFECTS OF SANDBLASTING CONDITIONS IN PREPARATION OF BIOACTIVE STAINLESS STEELS BY THE FUNCTION OF APATITE NUCLEI. Phosphorus Research Bulletin, 2016, 31, 15-19.	0.6	3
31	INVESTIGATION OF EFFECTIVE PROCEDURES IN FABRICATION OF BIOACTIVE PEEK USING THE FUNCTION OF APATITE NUCLEI. Phosphorus Research Bulletin, 2016, 31, 31-37.	0.6	3
32	Crystal Chemistry of Novel Complex Vanadium Oxides with Layered Structures Nihon Kessho Gakkaishi, 1998, 40, 397-402.	0.0	3
33	Micro Pattern of TiO ₂ Thin Film Formation by Direct Synthesis From Aqueous Solution and Transcription of Resist Pattern. Materials Research Society Symposia Proceedings, 2000, 623, 423.	0.1	2
34	Structural Relaxation of Li _x Ni _{0.874} Co _{0.090} Al _{0.036} O ₂ after Lithium Extraction down to (x ≠0.12). Journal of the Electrochemical Society, 2019, 166, A5153-A5156.	2.9	2
35	Lead acid battery with high resistance to overâ€discharge using graphite based materials as cathode current collector. Nano Select, 0, , .	3.7	2
36	Relaxation analysis of NCAs in high-voltage region and effect of cobalt content. Journal of Electroanalytical Chemistry, 2020, 878, 114566.	3.8	1