Per Augustsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1697484/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fast Microscale Acoustic Streaming Driven by a Temperature-Gradient-Induced Nondissipative Acoustic Body Force. Physical Review Letters, 2021, 127, 064501.	7.8	11
2	Particle-size-dependent acoustophoretic motion and depletion of micro- and nano-particles at long timescales. Physical Review E, 2020, 102, 013108.	2.1	22
3	Gradient acoustic focusing of sub-micron particles for separation of bacteria from blood lysate. Scientific Reports, 2020, 10, 3670.	3.3	34
4	Experimental Characterization of Acoustic Streaming in Gradients of Density and Compressibility. Physical Review Applied, 2019, 11, .	3.8	41
5	Acoustic Streaming and Its Suppression in Inhomogeneous Fluids. Physical Review Letters, 2018, 120, 054501.	7.8	56
6	Acoustofluidic hematocrit determination. Analytica Chimica Acta, 2018, 1000, 199-204.	5.4	15
7	Suppression of acoustic streaming by the inhomogeneity-induced acoustic body force. Proceedings of Meetings on Acoustics, 2018, , .	0.3	1
8	Acoustic impedance matched buffers enable separation of bacteria from blood cells at high cell concentrations. Scientific Reports, 2018, 8, 9156.	3.3	72
9	Clinical-Scale Cell-Surface-Marker Independent Acoustic Microfluidic Enrichment of Tumor Cells from Blood. Analytical Chemistry, 2017, 89, 11954-11961.	6.5	50
10	Notice of Removal: Shaping acoustofluidic landscapes to profile and separate cells and sub-micron particles. , 2017, , .		0
11	Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields. Physical Review Letters, 2016, 117, 114504.	7.8	71
12	lso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping. Nature Communications, 2016, 7, 11556.	12.8	181
13	Label-free concentration of viable neurons, hESCs and cancer cells by means of acoustophoresis. Integrative Biology (United Kingdom), 2016, 8, 332-340.	1.3	34
14	A single inlet two-stage acoustophoresis chip enabling tumor cell enrichment from white blood cells. Lab on A Chip, 2015, 15, 2102-2109.	6.0	92
15	Acoustofluidic, Label-Free Separation and Simultaneous Concentration of Rare Tumor Cells from White Blood Cells. Analytical Chemistry, 2015, 87, 9322-9328.	6.5	131
16	Applications in Continuous FlowÂAcoustophoresis. , 2014, , 148-188.		2
17	Focusing of sub-micrometer particles and bacteria enabled by two-dimensional acoustophoresis. Lab on A Chip, 2014, 14, 2791-2799.	6.0	124
18	Acoustic radiation forces at liquid interfaces impact the performance of acoustophoresis. Lab on A Chip. 2014. 14. 3394-3400.	6.0	52

Per Augustsson

#	Article	IF	CITATIONS
19	Abstract 3077: Label free prostate cancer cell isolation from blood by acoustic standing wave technology - acoustophoresis. , 2014, , .		1
20	Ultrasound-induced acoustophoretic motion of microparticles in three dimensions. Physical Review E, 2013, 88, 023006.	2.1	132
21	Microchannel Acoustophoresis does not Impact Survival or Function of Microglia, Leukocytes or Tumor Cells. PLoS ONE, 2013, 8, e64233.	2.5	101
22	Abstract 1461: Two dimensional acoustic wave technology offers improved label free prostate cancer cell separation in blood , 2013, , .		0
23	Labelâ€free somatic cell cytometry in raw milk using acoustophoresis. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2012, 81A, 1076-1083.	1.5	32
24	Acoustophoretic microfluidic chip for sequential elution of surface bound molecules from beads or cells. Biomicrofluidics, 2012, 6, 34115.	2.4	11
25	Microfluidic, Label-Free Enrichment of Prostate Cancer Cells in Blood Based on Acoustophoresis. Analytical Chemistry, 2012, 84, 7954-7962.	6.5	287
26	Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane. Physical Review E, 2012, 86, 056307.	2.1	194
27	Acoustofluidics 11: Affinity specific extraction and sample decomplexing using continuous flow acoustophoresis. Lab on A Chip, 2012, 12, 1742.	6.0	47
28	Automated and temperature-controlled micro-PIV measurements enabling long-term-stable microchannel acoustophoresis characterization. Lab on A Chip, 2011, 11, 4152.	6.0	137
29	Measuring the local pressure amplitude in microchannel acoustophoresis. Lab on A Chip, 2010, 10, 563.	6.0	229
30	Buffer medium exchange in continuous cell and particle streams using ultrasonic standing wave focusing. Mikrochimica Acta, 2009, 164, 269-277.	5.0	64
31	Harmonic Microchip Acoustophoresis: A Route to Online Raw Milk Sample Precondition in Protein and Lipid Content Quality Control. Analytical Chemistry, 2009, 81, 6195-6200.	6.5	82
32	Decomplexing biofluids using microchip based acoustophoresis. Lab on A Chip, 2009, 9, 810-818.	6.0	64
33	Acoustic microfluidic chip technology to facilitate automation of phage display selection. FEBS Journal, 2008, 275, 5657-5666.	4.7	41