Fiona Francis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1697461/publications.pdf Version: 2024-02-01

FIGNA EDANCIS

#	Article	IF	CITATIONS
1	Lis1 mutation prevents basal radial glia-like cell production in the mouse. Human Molecular Genetics, 2022, 31, 942-957.	2.9	5
2	Human cerebral organoids reveal progenitor pathology in EML1â€linked cortical malformation. EMBO Reports, 2022, , e54027.	4.5	19
3	Visualising the cytoskeletal machinery in neuronal growth cones using cryo-electron tomography. Journal of Cell Science, 2022, 135, .	2.0	16
4	Novel role of the synaptic scaffold protein Dlgap4 in ventricular surface integrity and neuronal migration during cortical development. Nature Communications, 2022, 13, 2746.	12.8	4
5	Neuronal migration and disorders – an update. Current Opinion in Neurobiology, 2021, 66, 57-68.	4.2	25
6	Mapping the molecular and cellular complexity of cortical malformations. Science, 2021, 371, .	12.6	57
7	Extracellular Control of Radial Glia Proliferation and Scaffolding During Cortical Development and Pathology. Frontiers in Cell and Developmental Biology, 2020, 8, 578341.	3.7	25
8	Mutations in the Heterotopia Gene Eml1/EML1 Severely Disrupt the Formation of Primary Cilia. Cell Reports, 2019, 28, 1596-1611.e10.	6.4	28
9	EML1―associated brain overgrowth syndrome with ribbonâ€ŀike heterotopia. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2019, 181, 627-637.	1.6	17
10	Genes and Mechanisms Involved in the Generation and Amplification of Basal Radial Glial Cells. Frontiers in Cellular Neuroscience, 2019, 13, 381.	3.7	65
11	Rotatin' the phenotypes. Brain, 2019, 142, 834-838.	7.6	0
12	The neuroanatomy of <i>Eml</i> 1 knockout mice, a model of subcortical heterotopia. Journal of Anatomy, 2019, 235, 637-650.	1.5	13
13	Tubulin diversity and neuronal migration. Cell Cycle, 2018, 17, 405-406.	2.6	4
14	Cortical progenitor biology: key features mediating proliferation versus differentiation. Journal of Neurochemistry, 2018, 146, 500-525.	3.9	77
15	Genetics and mechanisms leading to human cortical malformations. Seminars in Cell and Developmental Biology, 2018, 76, 33-75.	5.0	87
16	Microtubule architecture <i>in vitro</i> and in cells revealed by cryo-electron tomography. Acta Crystallographica Section D: Structural Biology, 2018, 74, 572-584.	2.3	74
17	Mutation of the α-tubulin Tuba1a leads to straighter microtubules and perturbs neuronal migration. Journal of Cell Biology, 2017, 216, 2443-2461.	5.2	61
18	Eml1 loss impairs apical progenitor spindle length and soma shape in the developing cerebral cortex. Scientific Reports, 2017, 7, 17308.	3.3	26

FIONA FRANCIS

#	Article	IF	CITATIONS
19	Early born neurons are abnormally positioned in the doublecortin knockout hippocampus. Human Molecular Genetics, 2016, 26, ddw370.	2.9	9
20	Neuronal migration disorders: Focus on the cytoskeleton and epilepsy. Neurobiology of Disease, 2016, 92, 18-45.	4.4	82
21	Morphological and functional aspects of progenitors perturbed in cortical malformations. Frontiers in Cellular Neuroscience, 2015, 9, 30.	3.7	42
22	Neuronal migration and its disorders affecting the CA3 region. Frontiers in Cellular Neuroscience, 2014, 8, 63.	3.7	13
23	Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nature Neuroscience, 2014, 17, 923-933.	14.8	137
24	Beta tubulin isoforms are not interchangeable for rescuing impaired radial migration due to Tubb3 knockdown. Human Molecular Genetics, 2014, 23, 1516-1526.	2.9	46
25	Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nature Genetics, 2013, 45, 639-647.	21.4	399
26	Expanding the spectrum of TUBA1A-related cortical dysgenesis to Polymicrogyria. European Journal of Human Genetics, 2013, 21, 381-385.	2.8	63
27	New insights into genotype–phenotype correlations for the doublecortin-related lissencephaly spectrum. Brain, 2013, 136, 223-244.	7.6	99
28	Organelle and Cellular Abnormalities Associated with Hippocampal Heterotopia in Neonatal Doublecortin Knockout Mice. PLoS ONE, 2013, 8, e72622.	2.5	9
29	Doublecortin Knockout Mice Show Normal Hippocampal-Dependent Memory Despite CA3 Lamination Defects. PLoS ONE, 2013, 8, e74992.	2.5	18
30	Cellular anatomy, physiology and epileptiform activity in the CA3 region of <i>Dcx</i> knockout mice: a neuronal lamination defect and its consequences. European Journal of Neuroscience, 2012, 35, 244-256.	2.6	22
31	Neuropathological phenotype of a distinct form of lissencephaly associated with mutations in TUBA1A. Brain, 2008, 131, 2304-2320.	7.6	98
32	Epilepsy in Dcx Knockout Mice Associated with Discrete Lamination Defects and Enhanced Excitability in the Hippocampus. PLoS ONE, 2008, 3, e2473.	2.5	63
33	Large spectrum of lissencephaly and pachygyria phenotypes resulting from de novo missense mutations in tubulin alpha 1A (<i>TUBA1A</i>). Human Mutation, 2007, 28, 1055-1064.	2.5	213
34	Magnetic resonance imaging and histological studies of corpus callosal and hippocampal abnormalities linked to <i>doublecortin</i> deficiency. Journal of Comparative Neurology, 2007, 500, 239-254.	1.6	64
35	Branching and nucleokinesis defects in migrating interneurons derived from doublecortin knockout mice. Human Molecular Genetics, 2006, 15, 1387-1400.	2.9	145
36	Comparative aspects of cerebral cortical development. European Journal of Neuroscience, 2006, 23, 921-934.	2.6	237

FIONA FRANCIS

#	Article	IF	CITATIONS
37	Human disorders of cortical development: from past to present. European Journal of Neuroscience, 2006, 23, 877-893.	2.6	138
38	Mechanism of Microtubule Stabilization by Doublecortin. Molecular Cell, 2004, 14, 833-839.	9.7	220
39	Doublecortin Functions at the Extremities of Growing Neuronal Processes. Cerebral Cortex, 2003, 13, 620-626.	2.9	163
40	ARX, a novel Prd-class-homeobox gene highly expressed in the telencephalon, is mutated in X-linked mental retardation. Human Molecular Genetics, 2002, 11, 981-991.	2.9	248
41	Doublecortin Interacts with \hat{l} 4 Subunits of Clathrin Adaptor Complexes in the Developing Nervous System. Molecular and Cellular Neurosciences, 2001, 18, 307-319.	2.2	57
42	Doublecortin Is a Developmentally Regulated, Microtubule-Associated Protein Expressed in Migrating and Differentiating Neurons. Neuron, 1999, 23, 247-256.	8.1	936