Franck Anicet Ditengou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/169743/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Auxin biosynthesis and cellular efflux act together to regulate leaf vein patterning. Journal of Experimental Botany, 2021, 72, 1151-1165.	2.4	24
2	Formin-mediated bridging of cell wall, plasma membrane, and cytoskeleton in symbiotic infections of Medicago truncatula. Current Biology, 2021, 31, 2712-2719.e5.	1.8	20
3	Exocyst subunit Exo70B2 is linked to immune signaling and autophagy. Plant Cell, 2021, 33, 404-419.	3.1	31
4	Distinct signaling routes mediate intercellular and intracellular rhizobial infection in <i>Lotus japonicus</i> . Plant Physiology, 2021, 185, 1131-1147.	2.3	26
5	Retrograde Induction of phyB Orchestrates Ethylene-Auxin Hierarchy to Regulate Growth. Plant Physiology, 2020, 183, 1268-1280.	2.3	27
6	The <i>Medicago truncatula</i> DREPP Protein Triggers Microtubule Fragmentation in Membrane Nanodomains during Symbiotic Infections. Plant Cell, 2020, 32, 1689-1702.	3.1	23
7	Settling for Less: Do Statoliths Modulate Gravity Perception?. Plants, 2020, 9, 121.	1.6	3
8	The MKK7-MPK6 MAP Kinase Module Is a Regulator of Meristem Quiescence or Active Growth in Arabidopsis. Frontiers in Plant Science, 2019, 10, 202.	1.7	14
9	Converging Light, Energy and Hormonal Signaling Control Meristem Activity, Leaf Initiation, and Growth. Plant Physiology, 2018, 176, 1365-1381.	2.3	45
10	Characterization of auxin transporter <scp>PIN</scp> 6 plasma membrane targeting reveals a function for <scp>PIN</scp> 6 in plant bolting. New Phytologist, 2018, 217, 1610-1624.	3.5	39
11	Coevolving <scp>MAPK</scp> and <scp>PID</scp> phosphosites indicate an ancient environmental control of <scp>PIN</scp> auxin transporters in land plants. FEBS Letters, 2018, 592, 89-102.	1.3	48
12	Root Gravitropism Is Regulated by a Crosstalk between <i>para</i> -Aminobenzoic Acid, Ethylene, and Auxin. Plant Physiology, 2018, 178, 1370-1389.	2.3	33
13	Interplay of the two ancient metabolites auxin and MEcPP regulates adaptive growth. Nature Communications, 2018, 9, 2262.	5.8	27
14	2-D Clinostat for Simulated Microgravity Experiments with Arabidopsis Seedlings. Microgravity Science and Technology, 2016, 28, 59-66.	0.7	15
15	Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nature Communications, 2015, 6, 6279.	5.8	211
16	The <scp>iRoCS T</scp> oolbox – 3 <scp>D</scp> analysis of the plant root apical meristem at cellular resolution. Plant Journal, 2014, 77, 806-814.	2.8	80
17	Analysis of gene expression during parabolic flights reveals distinct early gravity responses in <i><i><scp>A</scp>rabidopsis</i> roots. Plant Biology, 2014, 16, 129-141.</i>	1.8	33
18	Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the <i>Arabidopsis</i> root apex. New Phytologist, 2013, 197, 1130-1141.	3.5	115

Franck Anicet Ditengou

#	Article	IF	CITATIONS
19	Plastid-Localized Glutathione Reductase2-Regulated Glutathione Redox Status Is Essential for Arabidopsis Root Apical Meristem Maintenance. Plant Cell, 2013, 25, 4451-4468.	3.1	126
20	Whole-mount in situ detection of microRNAs on Arabidopsis tissues using Zip Nucleic Acid probes. Analytical Biochemistry, 2013, 434, 60-66.	1.1	16
21	<i>ERECTA</i> Family Genes Regulate Auxin Transport in the Shoot Apical Meristem and Forming Leaf Primordia. Plant Physiology, 2013, 162, 1978-1991.	2.3	65
22	Maternal Control of PIN1 Is Required for Female Gametophyte Development in Arabidopsis. PLoS ONE, 2013, 8, e66148.	1.1	106
23	Perspectives in Nanoparticle Imaging of Living Cells. , 2010, , .		Ο
24	Seasonal and cell type specific expression of sulfate transporters in the phloem of Populus reveals tree specific characteristics for SO4 2â^' storage and mobilization. Plant Molecular Biology, 2010, 72, 499-517.	2.0	34
25	The polycotyledon (pct1-2) mutant of tomato shows enhanced accumulation of PIN1 auxin transport facilitator protein. Plant Biology, 2010, 12, 224-228.	1.8	14
26	Lateral root stimulation in the early interaction between <i>Arabidopsis thaliana</i> and the ectomycorrhizal fungus <i>Laccaria bicolor</i> . Plant Signaling and Behavior, 2010, 5, 864-867.	1.2	45
27	<i>NO VEIN</i> facilitates auxin-mediated development in Arabidopsis. Plant Signaling and Behavior, 2010, 5, 1249-1251.	1.2	3
28	NO VEIN Mediates Auxin-Dependent Specification and Patterning in the Arabidopsis Embryo, Shoot, and Root. Plant Cell, 2009, 21, 3133-3151.	3.1	36
29	The Ectomycorrhizal Fungus <i>Laccaria bicolor</i> Stimulates Lateral Root Formation in Poplar and Arabidopsis through Auxin Transport and Signaling. Plant Physiology, 2009, 151, 1991-2005.	2.3	244
30	A cysteineâ€rich receptorâ€like kinase NCRK and a pathogenâ€induced protein kinase RBK1 are Rop GTPase interactors. Plant Journal, 2008, 53, 909-923.	2.8	56
31	Blue shift of CdSe/ZnS nanocrystal-labels upon DNA-hybridization. Journal of Nanobiotechnology, 2008, 6, 7.	4.2	30
32	Mechanical induction of lateral root initiation in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18818-18823.	3.3	288
33	Auxin as a Model for the Integration of Hormonal Signal Processing and Transduction. Molecular Plant, 2008, 1, 229-237.	3.9	67
34	Ubiquitin Lysine 63 Chain–Forming Ligases Regulate Apical Dominance in Arabidopsis. Plant Cell, 2007, 19, 1898-1911.	3.1	97
35	Auxin transport and gravitational research: perspectives. Protoplasma, 2006, 229, 175-181.	1.0	46
36	The TORNADO1 and TORNADO2 Genes Function in Several Patterning Processes during Early Leaf Development in Arabidopsis thaliana. Plant Cell, 2006, 18, 852-866.	3.1	96

#	Article	IF	CITATIONS
37	Competitive antagonism between IAA and indole alkaloid hypaphorine must contribute to regulate ontogenesis. Physiologia Plantarum, 2005, 123, 120-129.	2.6	35
38	Auxin and the developing root of Arabidopsis thaliana. Physiologia Plantarum, 2005, 123, 130-138.	2.6	55
39	The indole alkaloids brucine, yohimbine, and hypaphorine are indole-3-acetic acid-specific competitors which do not alter auxin transport. Physiologia Plantarum, 2004, 120, 501-508.	2.6	7
40	Hypaphorine, an indole-3-acetic acid antagonist delivered by the ectomycorrhizal fungus Pisolithus tinctorius , induces reorganisation of actin and the microtubule cytoskeleton in Eucalyptus globulus ssp bicostata root hairs. Planta, 2003, 218, 217-225.	1.6	34
41	Developmental cross talking in the ectomycorrhizal symbiosis: signals and communication genes. New Phytologist, 2001, 151, 145-154.	3.5	171
42	Root hair elongation is inhibited by hypaphorine, the indole alkaloid from the ectomycorrhizal fungus Pisolithus tinctorius , and restored by indole-3-acetic acid. Planta, 2000, 211, 722-728.	1.6	80
43	Hypaphorine from the Ectomycorrhizal Fungus Pisolithus tinctorius Counteracts Activities of Indole-3-Acetic Acid and Ethylene but Not Synthetic Auxins in Eucalypt Seedlings. Molecular Plant-Microbe Interactions, 2000, 13, 151-158.	1.4	86
44	The expression of a symbiosis-regulated gene in eucalypt roots is regulated by auxins and hypaphorine, the tryptophan betaine of the ectomycorrhizal basidiomycete Pisolithus tinctorius. Planta, 1998, 207, 206, 202	1.6	70

296-302.