Sara Amancio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1697295/publications.pdf

Version: 2024-02-01

304602 395590 1,309 58 22 33 citations h-index g-index papers 61 61 61 1566 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Developmental Regulation of Transcription in Touriga Nacional Berries under Deficit Irrigation. Plants, 2022, 11, 827.	1.6	1
2	Portuguese wild grapevine genome re-sequencing (Vitis vinifera sylvestris). Scientific Reports, 2020, 10, 18993.	1.6	4
3	Selecting Aragonez Genotypes Able to Outplay Climate Change–Driven Abiotic Stress. Frontiers in Plant Science, 2020, 11, 599230.	1.7	7
4	Cutting the Gordian Knot of abiotic stress in grapevine: From the test tube to climate change adaptation. Physiologia Plantarum, 2019, 165, 330-342.	2.6	25
5	<i>Vitis</i> flower types: from the wild to crop plants. PeerJ, 2019, 7, e7879.	0.9	10
6	Physiological and agronomical responses to environmental fluctuations of two Portuguese grapevine varieties during three field seasons. Ciencia E Tecnica Vitivinicola, 2018, 33, 1-14.	0.3	3
7	Vitis Flower Sex Specification Acts Downstream and Independently of the ABCDE Model Genes. Frontiers in Plant Science, 2018, 9, 1029.	1.7	19
8	Deep analysis of wild Vitis flower transcriptome reveals unexplored genome regions associated with sex specification. Plant Molecular Biology, 2017, 93, 151-170.	2.0	19
9	VviAPRT3 and VviFSEX: Two Genes Involved in Sex Specification Able to Distinguish Different Flower Types in Vitis. Frontiers in Plant Science, 2017, 8, 98.	1.7	29
10	How the Depletion in Mineral Major Elements Affects Grapevine (Vitis vinifera L.) Primary Cell Wall. Frontiers in Plant Science, 2017, 8, 1439.	1.7	2
11	Design of a Custom RT-qPCR Array for Assignment of Abiotic Stress Tolerance in Traditional Portuguese Grapevine Varieties. Frontiers in Plant Science, 2017, 8, 1835.	1.7	12
12	The Sulfur Pathway and Diagnosis of Sulfate Depletion in Grapevine. Proceedings of the International Plant Sulfur Workshop, 2017, , 181-189.	0.1	2
13	Differential physiological response of the grapevine varieties Touriga Nacional and Trincadeira to combined heat, drought and light stresses. Plant Biology, 2016, 18, 101-111.	1.8	64
14	Immunolocalization of cell wall polymers in grapevine (Vitis vinifera) internodes under nitrogen, phosphorus or sulfur deficiency. Journal of Plant Research, 2016, 129, 1151-1163.	1.2	13
15	Transcriptomic comparison between two Vitis vinifera L. varieties (Trincadeira and Touriga Nacional) in abiotic stress conditions. BMC Plant Biology, 2016, 16, 224.	1.6	41
16	Regulation of cell wall remodeling in grapevine (Vitis vinifera L.) callus under individual mineral stress deficiency. Journal of Plant Physiology, 2016, 190, 95-105.	1.6	16
17	Characterization of the serine acetyltransferase gene family of Vitis vinifera uncovers differences in regulation of OAS synthesis in woody plants. Frontiers in Plant Science, 2015, 6, 74.	1.7	19
18	Relating Water Deficiency to Berry Texture, Skin Cell Wall Composition, and Expression of Remodeling Genes in Two <i>Vitis vinifera</i> L. Varieties. Journal of Agricultural and Food Chemistry, 2015, 63, 3951-3961.	2.4	10

#	Article	lF	Citations
19	Selective silencing of <i>2Cys</i> and <i>typeâ€NB Peroxiredoxins</i> discloses their roles in cell redox state and stress signaling. Journal of Integrative Plant Biology, 2015, 57, 591-601.	4.1	15
20	Foreword: The Value of Sulfur for Grapevine. Proceedings of the International Plant Sulfur Workshop, 2015, , 1-7.	0.1	0
21	Heat stress in grapevine: the pros and cons of acclimation. Plant, Cell and Environment, 2015, 38, 777-789.	2.8	45
22	Comparison of plantain plantlets propagated in temporary immersion bioreactors and gelled medium during in vitro growth and acclimatization. Biologia Plantarum, 2014, 58, 29-38.	1.9	37
23	Heat and water stress induce unique transcriptional signatures of heat-shock proteins and transcription factors in grapevine. Functional and Integrative Genomics, 2014, 14, 135-148.	1.4	65
24	Mineral stress affects the cell wall composition of grapevine (Vitis vinifera L.) callus. Plant Science, 2013, 205-206, 111-120.	1.7	37
25	Vitis vinifera secondary metabolism as affected by sulfate depletion: Diagnosis through phenylpropanoid pathway genes and metabolites. Plant Physiology and Biochemistry, 2013, 66, 118-126.	2.8	30
26	Peroxiredoxins are involved in two independent signalling pathways in the abiotic stress protection in Vitis vinifera. Biologia Plantarum, 2013, 57, 675-683.	1.9	16
27	The physiology of ex vitro pineapple (Ananas comosus L. Merr. var MD-2) as CAM or C3 is regulated by the environmental conditions: proteomic and transcriptomic profiles. Plant Cell Reports, 2013, 32, 1807-1818.	2.8	17
28	Microarray-based uncovering reference genes for quantitative real time PCR in grapevine under abiotic stress. BMC Research Notes, 2012, 5, 220.	0.6	41
29	The physiology of ex vitro pineapple (Ananas comosus L. Merr. var MD-2) as CAM or C3 is regulated by the environmental conditions. Plant Cell Reports, 2012, 31, 757-769.	2.8	30
30	Comparative Transcriptomic Profiling of Vitis vinifera Under High Light Using a Custom-Made Array and the Affymetrix GeneChip. Molecular Plant, 2011, 4, 1038-1051.	3.9	22
31	Ex vitro acclimatization of plantain plantlets micropropagated in temporary immersion bioreactor. Biologia Plantarum, 2010, 54, 237-244.	1.9	27
32	Identification and expression of cytokinin signaling and meristem identity genes in sulfur deficient grapevine (<i>Vitis vinifera L</i>). Plant Signaling and Behavior, 2009, 4, 1128-1135.	1.2	8
33	Sugarcane (Saccharum sp. Hybrid) Propagated in Headspace Renovating Systems Shows Autotrophic Characteristics and Develops Improved Anti-oxidative Response. Tropical Plant Biology, 2009, 2, 38-50.	1.0	13
34	EFFECT OF GEL MEDIUM AND TIB PROPAGATION TECHNIQUES ON STRESS DEFENSE AND ANATOMY OF SUGARCANE LEAVES DURING ACCLIMATIZATION. Acta Horticulturae, 2009, , 441-446.	0.1	2
35	Grapevine & Sulfur: Old Partners, New Achievements., 2009,, 31-52.		4
36	Quantitation of endogenous levels of IAA, IAAsp and IBA in micro-propagated shoots of hybrid chestnut pre-treated with IBA. In Vitro Cellular and Developmental Biology - Plant, 2008, 44, 412-418.	0.9	16

#	Article	IF	CITATIONS
37	Solanum lycopersicon Mill. and Nicotiana benthamiana L. under high light show distinct responses to anti-oxidative stress. Journal of Plant Physiology, 2008, 165, 1300-1312.	1.6	23
38	Integration of stress produced reactive oxygen species in the stomatal regulation of micropropagatedVitis viniferaL. plantlets impaired in ABA signalling. Plant Signaling and Behavior, 2008, 3, 558-559.	1.2	3
39	Derepressed Sulfate Transporters Are Strongly and Rapidly Repressed after Sulfate Addition to Sulfurâ€Depleted Vitis Cells. International Journal of Plant Sciences, 2008, 169, 987-997.	0.6	7
40	Gain of function of stomatal movements in rooting Vitis vinifera L. plants: regulation by H2O2 is independent of ABA before the protruding of roots. Plant Cell Reports, 2007, 26, 2149-2157.	2.8	23
41	Activation of the Ascorbateâ€Glutathione Cycle Is an Early Response of Micropropagated Vitis vinifera L. Explants Transferred to ex Vitro. International Journal of Plant Sciences, 2006, 167, 759-770.	0.6	32
42	Patterns of B-type cyclin gene expression during adventitious rooting of micropropagated cork oak. Plant Cell, Tissue and Organ Culture, 2006, 86, 367-374.	1.2	9
43	Stability and activity of rubisco in chestnut plantlets transferred to ex vitro conditions under elevated CO2. In Vitro Cellular and Developmental Biology - Plant, 2005, 41, 525-531.	0.9	3
44	Monitoring the stability of Rubisco in micropropagated grapevine (Vitis vinifera L.) by two-dimensional electrophoresis. Journal of Plant Physiology, 2005, 162, 365-374.	1.6	19
45	RAPD Assessment for Identification of Clonal Identity and Genetic Stability of in vitro Propagated Chestnut Hybrids. Plant Cell, Tissue and Organ Culture, 2004, 77, 23-27.	1.2	58
46	Cloning and characterisation of a basic IAA oxidase associated with root induction in Vitis vinifera. Plant Physiology and Biochemistry, 2004, 42, 609-615.	2.8	31
47	Antioxidant defence system in plantlets transferred from in vitro to ex vitro: effects of increasing light intensity and CO2 concentration. Plant Science, 2002, 162, 33-40.	1.7	53
48	Effect of ex vitro conditions on growth and acquisition of autotrophic behaviour during the acclimatisation of chestnut regenerated in vitro. Scientia Horticulturae, 2002, 95, 151-164.	1.7	19
49	Involvement of free and conjugated polyamines and free amino acids in the adventitious rooting of micropropagated cork oak and grapevine shoots. Plant Physiology and Biochemistry, 2002, 40, 1071-1080.	2.8	27
50	Title is missing!. Plant Cell, Tissue and Organ Culture, 2001, 67, 271-280.	1.2	64
51	Uptake and assimilation of sulphate by sulphur deficient Zea mays cells: The role of O-acetyl-L-serine in the interaction between nitrogen and sulphur assimilatory pathways. Plant Physiology and Biochemistry, 1999, 37, 283-290.	2.8	45
52	Title is missing!. Plant Cell, Tissue and Organ Culture, 1999, 58, 31-37.	1.2	41
53	EFFECT OF ROOTING CONDITIONS ON SURVIVAL AND GROWTH DURING ACCLIMATIZATION OF MICROPROPAGATED CHESTNUT PLANTS (CASTANEA SATIVA X C. CRENATA). Acta Horticulturae, 1999, , 235-242.	0.1	5
54	In vitro propagation of chestnut (Castanea sativa×C. crenata): Effects of rooting treatments on plant survival, peroxidase activity and anatomical changes during adventitious root formation. Scientia Horticulturae, 1998, 72, 265-275.	1.7	58

#	Article	IF	CITATION
55	Rooting and acclimatization of chestnut by in vitro propagation. , 1994, , 303-308.		2
56	Effects of the source of inorganic nitrogen on C and N interaction in maize callus tissue: phosphoenolpyruvate carboxylase activity, cytosolic pH and 15N amino acids. Physiologia Plantarum, 1993, 89, 618-625.	2.6	8
57	Nitrate and Ammonium Assimilation by Roots of Maize (Zea maysL.) Seedlings as Investigated byIn Vivo15N-NMR. Journal of Experimental Botany, 1992, 43, 633-639.	2.4	36
58	Synchronous growth and synthesis of macromolecules in a naturally wall-less volvocale, Dunaliella bioculata. Protoplasma, 1978, 95, 135-144.	1.0	15