
Lorette Sicard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1696909/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Co–Ru Nanoalloy Catalysts for the Acceptorless Dehydrogenation of Alcohols. ACS Applied Nano Materials, 2022, 5, 5733-5744.	5.0	3
2	Inorganic nanotubes with permanent wall polarization as dual photo-reactors for wastewater treatment with simultaneous fuel production. Environmental Science: Nano, 2021, 8, 2523-2541.	4.3	2
3	Importance of the decoration in shaped cobalt nanoparticles in the acceptor-less secondary alcohol dehydrogenation. Catalysis Science and Technology, 2020, 10, 4923-4937.	4.1	14
4	One-Pot Seed-Mediated Growth of Co Nanoparticles by the Polyol Process: Unraveling the Heterogeneous Nucleation. Nano Letters, 2019, 19, 9160-9169.	9.1	25
5	Unsupported shaped cobalt nanoparticles as efficient and recyclable catalysts for the solvent-free acceptorless dehydrogenation of alcohols. Catalysis Science and Technology, 2018, 8, 562-572.	4.1	20
6	Importance of the synthesis and sintering methods on the properties of manganite ceramics: The example of La 0.7 Ca 0.3 MnO 3. Journal of Alloys and Compounds, 2018, 759, 52-59.	5.5	13
7	The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chemical Society Reviews, 2018, 47, 5187-5233.	38.1	390
8	Magnetocaloric nanostructured La0.7Ca0.3â^'xBaxMnO3 (xÂ<Â0.3) ceramics produced by combining polyol process and Spark Plasma Sintering. Journal of Alloys and Compounds, 2017, 691, 474-481.	5.5	7
9	Soft chemistry synthesis route toward Bi2Te3 hierarchical hollow spheres. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	5
10	Preparation of nanostructured La0.7Ca0.3â^'xBaxMnO3 ceramics by a combined sol–gel and spark plasma sintering route and resulting magnetocaloric properties. Journal of Magnetism and Magnetic Materials, 2015, 381, 215-219.	2.3	22
11	Effect of synthesis method on structural, magnetic and magnetocaloric properties of La0.7Sr0.2Ag0.1MnO3 manganite. Materials Chemistry and Physics, 2014, 145, 56-59.	4.0	27
12	Magnetic and magnetocaloric properties of La0.85(Na1â^'xKx)0.15MnO3 ceramics produced by reactive spark plasma sintering. Journal of Applied Physics, 2014, 115, 17A917.	2.5	21
13	Magnetocaloric properties of La _{0.67} Ca _{0.33} MnO ₃ produced by reactive spark plasma sintering and by conventional ceramic route. Materials Research Express, 2014, 1, 046105.	1.6	11
14	Effect of sodium substitution on the physical properties of sol–gel made La 0.65 Ca 0.35 MnO 3 ceramics. Materials Chemistry and Physics, 2014, 148, 751-758.	4.0	16
15	A combined sol–gel and spark plasma sintering route to produce highly dense and fine-grained La0.65Ca0.20Na0.15MnO3ceramics for magnetocaloric applications. Materials Research Express, 2014, 1, 015703.	1.6	2
16	Effect of Air Annealing on the Structural and Magnetic Properties of LaMnO3 Perovskite Produced by Reactive Spark Plasma Sintering Route. Journal of Superconductivity and Novel Magnetism, 2013, 26, 1467-1471.	1.8	6
17	Rapid synthesis of La0.85Na0.15MnO3 by spark plasma sintering: Magnetic behavior and magnetocaloric properties. Materials Chemistry and Physics, 2013, 139, 629-633.	4.0	8
18	Structure and magnetocaloric properties of La0.8Ag0.2â^'xKxMnO3 perovskite manganites. Materials Chemistry and Physics, 2012, 132, 839-845.	4.0	41