
MarÃa Teresa GarcÃa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1696811/publications.pdf Version: 2024-02-01

MADÃA TEDESA CADÇÃA

#	Article	IF	CITATIONS
1	Study of the solubility and stability of polystyrene wastes in a dissolution recycling process. Waste Management, 2009, 29, 1814-1818.	7.4	135
2	Supercritical fluid extraction of tocopherol concentrates from olive tree leaves. Journal of Supercritical Fluids, 2002, 22, 221-228.	3.2	112
3	Production of biodegradable porous scaffolds impregnated with indomethacin in supercritical CO2. Journal of Supercritical Fluids, 2012, 63, 155-160.	3.2	66
4	Regeneration of Used Lubricant Oil by Polar Solvent Extraction. Industrial & Engineering Chemistry Research, 2005, 44, 4373-4379.	3.7	63
5	Glycolysis of flexible polyurethane wastes using stannous octoate as the catalyst: Study on the influence of reaction parameters. Polymer Degradation and Stability, 2013, 98, 144-149.	5.8	59
6	Regeneration of used lubricant oil by ethane extraction. Journal of Supercritical Fluids, 2007, 39, 315-322.	3.2	58
7	Regeneration of Used Lubricant Oil by Propane Extraction. Industrial & Engineering Chemistry Research, 2003, 42, 4867-4873.	3.7	52
8	Recycling extruded polystyrene by dissolution with suitable solvents. Journal of Material Cycles and Waste Management, 2009, 11, 2-5.	3.0	42
9	Optimization of supercritical CO2 process for the concentration of tocopherol, carotenoids and chlorophylls from residual olive husk. Journal of Supercritical Fluids, 2011, 59, 72-77.	3.2	41
10	Partial oxidation of methane to formaldehyde over Mo/HZSM-5 catalysts. Applied Catalysis A: General, 2000, 203, 81-90.	4.3	38
11	Production of biodegradable porous scaffolds impregnated with 5-fluorouracil in supercritical CO2. Journal of Supercritical Fluids, 2013, 80, 1-8.	3.2	38
12	Solubility Determination and Model Prediction of Olive Husk Oil in Supercritical Carbon Dioxide and Cosolvents. Industrial & Engineering Chemistry Research, 2007, 46, 5061-5066.	3.7	37
13	Influence of operating variables on yield and quality parameters of olive husk oil extracted with supercritical carbon dioxide. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 237-243.	1.9	33
14	Waste Oil Recycling Using Mixtures of Polar Solvents. Industrial & Engineering Chemistry Research, 2005, 44, 7854-7859.	3.7	33
15	Isolation of aroma compounds from sugar cane spirits by supercritical CO2. Journal of Supercritical Fluids, 2007, 43, 37-42.	3.2	32
16	Adsorption of phenol and chlorophenols onto granular activated carbon and their desorption by supercritical CO ₂ . Journal of Chemical Technology and Biotechnology, 2014, 89, 1660-1667.	3.2	32
17	Modelling of the phase behaviour for vegetable oils at supercritical conditions. Journal of Supercritical Fluids, 2009, 48, 189-194.	3.2	31
18	lsolation of Rock Rose Essential Oil Using Supercritical CO2Extraction. Separation Science and Technology, 2000, 35, 2745-2763.	2.5	29

MarÃa Teresa GarcÃa

#	Article	IF	CITATIONS
19	Optimization of Allium sativum Solvent Extraction for the Inhibition of in Vitro Growth of Helicobacter Pylori. Biotechnology Progress, 2002, 18, 1227-1232.	2.6	28
20	The Selective Dissolution Technique as Initial Step for Polystyrene Recycling. Waste and Biomass Valorization, 2013, 4, 29-36.	3.4	28
21	Improvement of the Waste-Oil Vacuum-Distillation Recycling by Continuous Extraction with Dense Propane. Industrial & Engineering Chemistry Research, 2007, 46, 266-272.	3.7	26
22	Development of a strategy for the foaming of polystyrene dissolutions in scCO2. Journal of Supercritical Fluids, 2013, 76, 126-134.	3.2	26
23	Influence of operation variables on quality parameters of olive husk oil extracted with CO2 : Three-step sequential extraction. JAOCS, Journal of the American Oil Chemists' Society, 2003, 80, 181-188.	1.9	24
24	Application of Supercritical Fluid Extraction to Brewer's Spent Grain Management. Industrial & Engineering Chemistry Research, 2008, 47, 1614-1619.	3.7	24
25	Preparation and characterization of polystyrene foams from limonene solutions. Journal of Supercritical Fluids, 2014, 88, 92-104.	3.2	23
26	Continuous fractionation of used frying oil by supercritical CO2. JAOCS, Journal of the American Oil Chemists' Society, 2004, 81, 879-885.	1.9	22
27	Supercritical fluid fractionation of liquid oleoresin capsicum: Statistical analysis and solubility parameters. Journal of Supercritical Fluids, 2010, 54, 22-29.	3.2	22
28	New considerations in the economic evaluation of supercritical processes: Separation of bioactive compounds from multicomponent mixtures. Journal of Supercritical Fluids, 2013, 79, 345-355.	3.2	22
29	Production of drug-releasing biodegradable microporous scaffold impregnated with gemcitabine using a CO2 foaming process. Journal of CO2 Utilization, 2020, 41, 101227.	6.8	20
30	High-pressure phase equilibria of binary and ternary mixtures of carbon dioxide, triglycerides and free fatty acids: Measurement and modeling with the GC-EOS. Fluid Phase Equilibria, 2010, 295, 1-8.	2.5	18
31	Measurement and modeling of the high-pressure phase equilibria of CO2-Oleoresin Capsicum. Journal of Supercritical Fluids, 2011, 57, 112-119.	3.2	18
32	Modified W/HZSM-5 catalysts: structure and catalytic properties. Journal of Molecular Catalysis A, 2001, 171, 195-203.	4.8	15
33	Recycling of extruded polystyrene wastes by dissolution and supercritical CO2 technology. Journal of Material Cycles and Waste Management, 2012, 14, 308.	3.0	14
34	Modeling the Phase Behavior of Essential Oils in Supercritical CO ₂ for the Design of a Countercurrent Separation Column. Industrial & Engineering Chemistry Research, 2014, 53, 12830-12838.	3.7	14
35	Equilibrium data for the separation of oleoresin capsicum using supercritical CO2: A theoretical design of a countercurrent gas extraction column. Journal of Supercritical Fluids, 2011, 57, 1-8.	3.2	13
36	High-pressure phase equilibria of Polystyrene dissolutions in Limonene in presence of CO2. Journal of Supercritical Fluids, 2013, 84, 211-220.	3.2	13

MarÃa Teresa GarcÃa

#	Article	IF	CITATIONS
37	Clean preparation of tailored microcellular foams of polystyrene using nucleating agents and supercritical CO2. Journal of Materials Science, 2016, 51, 4825-4838.	3.7	13
38	Cost Effective Use of a Thiosulfinate-Enriched Allium sativum Extract in Combination with Chemotherapy in Colon Cancer. International Journal of Molecular Sciences, 2020, 21, 2766.	4.1	13
39	The effect of CO2 on the viscosity of polystyrene/limonene solutions. Journal of Supercritical Fluids, 2014, 88, 26-37.	3.2	10
40	Reduction of the carbon footprint through polystyrene recycling: Economical evaluation. Chemical Engineering Research and Design, 2016, 101, 144-151.	5.6	10
41	Optimizing the bulk copolymerization of D,L-lactide and glycolide by response surface methodology. EXPRESS Polymer Letters, 2013, 7, 886-894.	2.1	9
42	Functionalization and optimization of PLA with coumarin via click chemistry in supercritical CO 2. Journal of CO2 Utilization, 2017, 20, 20-26.	6.8	9
43	Improvement of PLGA loading and release of curcumin by supercritical technology. Journal of Supercritical Fluids, 2018, 141, 60-67.	3.2	9
44	Game-Based Learning and Just-in-Time Teaching to Address Misconceptions and Improve Safety and Learning in Laboratory Activities. Journal of Chemical Education, 2021, 98, 3118-3130.	2.3	9
45	Influence of the Operative Conditions on the Characteristics of Poly(D,Lâ€lactideâ€ <i>co</i> â€glycolide) Synthesized in Supercritical Carbon Dioxide. Macromolecular Symposia, 2010, 287, 111-118.	0.7	7
46	Modification of polystyrene properties by CO ₂ : Experimental study and correlation. Journal of Applied Polymer Science, 2015, 132, .	2.6	7
47	Production of biodegradable PLGA foams processed with high pressure CO2. Journal of Supercritical Fluids, 2020, 164, 104886.	3.2	7
48	Foaming Process from Polystyrene/ <i>p</i> ymene Solutions Using CO ₂ . Chemical Engineering and Technology, 2014, 37, 1845-1853.	1.5	6
49	Determination of the high-pressure phase equilibria of Polystyrene/p-Cymene in presence of CO2. Journal of Supercritical Fluids, 2014, 92, 288-298.	3.2	6
50	Analysis and optimization of grape seed oil epoxidation in supercritical CO2. Journal of Supercritical Fluids, 2021, 168, 105070.	3.2	6
51	Application of Supercritical Fluid Extraction for the Recovery of Aroma Compounds to be Used in Fast Aged Rum Production. Food Science and Technology Research, 2009, 15, 353-360.	0.6	5
52	Measurement, correlation and modelling of high-pressure phase equilibrium of PLGA solutions in CO2. Journal of Supercritical Fluids, 2020, 155, 104637.	3.2	5
53	Copper-Containing Catalysts for Azide–Alkyne Cycloaddition in Supercritical CO2. Catalysts, 2022, 12, 194.	3.5	5
54	Carbon dioxide sorption and melting behaviour of mPEC-alkyne. Journal of Supercritical Fluids, 2021, 171, 105182.	3.2	4

#	Article	IF	CITATIONS
55	Copper wire as a clean and efficient catalyst for click chemistry in supercritical CO2. Catalysis Today, 2020, 346, 65-68.	4.4	3
56	Synthesis and Operating Optimization of the PEG Conjugate via CuAAC in scCO ₂ . ACS Omega, 2021, 6, 6163-6171.	3.5	3
57	Kinetics of Grape Seed Oil Epoxidation in Supercritical CO2. Catalysts, 2021, 11, 1490.	3.5	3
58	Optimization of a High Pressure CO ₂ Antisolvent Process for the Recycling of Polystyrene Wastes. Polymer-Plastics Technology and Engineering, 2016, 55, 335-342.	1.9	1
59	Dataset of working mPEG-alkyne with scCO2. Data in Brief, 2021, 35, 106907.	1.0	0
60	DEVELOPMENT OF RESOURCES FOR BLENDED LEARNING: DESIGN OF SIMULATORS IN SCIENTIFIC-TECHNICAL EDUCATION. EDULEARN Proceedings, 2022, , .	0.0	0