Silvio Osella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1696697/publications.pdf

Version: 2024-02-01

257357 265120 1,926 42 68 24 h-index citations g-index papers 69 69 69 3017 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Exhibiting environment sensitive optical properties through multiscale modelling: A study of photoactivatable probes. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 425, 113672.	2.0	2
2	The Interplay of Conjugation and Metal Coordination in Tuning the Electron Transfer Abilities of NTA-Graphene Based Interfaces. International Journal of Molecular Sciences, 2022, 23, 543.	1.8	1
3	Electrochemical Deposition of a Singleâ€Crystalline Nanorod Polycyclic Aromatic Hydrocarbon Film with Efficient Charge and Exciton Transport. Angewandte Chemie, 2022, 134, .	1.6	3
4	Electrochemical Deposition of a Singleâ€Crystalline Nanorod Polycyclic Aromatic Hydrocarbon Film with Efficient Charge and Exciton Transport. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
5	Nonplanar Rhombus and Kagome 2D Covalent Organic Frameworks from Distorted Aromatics for Electrical Conduction. Journal of the American Chemical Society, 2022, 144, 5042-5050.	6.6	54
6	Deciphering Photoinduced Charge Transfer Dynamics in a Cross-Linked Graphene–Dye Nanohybrid. Journal of Physical Chemistry C, 2022, 126, 3569-3581.	1.5	0
7	Solution Synthesis and Characterization of a Long and Curved Graphene Nanoribbon with Hybrid Cove–Armchair–Gulf Edge Structures. Advanced Science, 2022, 9, e2200708.	5.6	12
8	Performance of electrochemical immunoassays for clinical diagnostics of SARS-CoV-2 based on selective nucleocapsid N protein detection: Boron-doped diamond, gold and glassy carbon evaluation. Biosensors and Bioelectronics, 2022, 209, 114222.	5.3	23
9	Cove-Edged Graphene Nanoribbons with Incorporation of Periodic Zigzag-Edge Segments. Journal of the American Chemical Society, 2022, 144, 228-235.	6.6	28
10	Design Principles and Insights into the Liquid-Phase Exfoliation of Alpha-MoO ₃ for the Production of Colloidal 2D Nano-inks in Green Solvents. Journal of Physical Chemistry C, 2022, 126, 404-415.	1.5	2
11	Diazonium-Based Covalent Molecular Wiring of Single-Layer Graphene Leads to Enhanced Unidirectional Photocurrent Generation through the p-doping Effect. Chemistry of Materials, 2022, 34, 3744-3758.	3.2	2
12	The influence of lipid membranes on fluorescent probes' optical properties. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183494.	1.4	11
13	Synthesis of Nonplanar Graphene Nanoribbon with Fjord Edges. Journal of the American Chemical Society, 2021, 143, 5654-5658.	6.6	52
14	Challenges for Incorporating Optical Switchability in Organic-Based Electronic Devices. ACS Applied Materials & Samp; Interfaces, 2021, 13, 27737-27748.	4.0	17
15	Enhancement of direct electron transfer in graphene bioelectrodes containing novel cytochrome c variants with optimized heme orientation. Bioelectrochemistry, 2021, 140, 107818.	2.4	7
16	Development of a universal conductive platform for anchoring photo- and electroactive proteins using organometallic terpyridine molecular wires. Nanoscale, 2021, 13, 9773-9787.	2.8	7
17	Molecular mechanism of direct electron transfer in the robust cytochrome-functionalised graphene nanosystem. RSC Advances, 2021, 11, 18860-18869.	1.7	3
18	Artificial Photosynthesis: Is Computation Ready for the Challenge Ahead?. Nanomaterials, 2021, 11, 299.	1.9	3

#	Article	lF	CITATIONS
19	(INVITED) Lighting-up nanocarbons through hybridization: Optoelectronic properties and perspectives. Optical Materials: X, 2021, 12, 100100.	0.3	5
20	Molecular Modeling of Mechanisms of Decomposition of Ruthenium Metathesis Catalysts by Acrylonitrile. Organometallics, 2020, 39, 239-246.	1.1	15
21	Disentangling the role of solvent polarity and protein solvation in folding and self-assembly of α-lactalbumin. Journal of Colloid and Interface Science, 2020, 561, 749-761.	5.0	12
22	A Curved Graphene Nanoribbon with Multi-Edge Structure and High Intrinsic Charge Carrier Mobility. Journal of the American Chemical Society, 2020, 142, 18293-18298.	6.6	50
23	Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons. Nano Letters, 2020, 20, 2993-3002.	4.5	52
24	Push/Pull Effect as Driving Force for Different Optical Responses of Azobenzene in a Biological Environment. Journal of Physical Chemistry C, 2020, 124, 8310-8322.	1.5	11
25	Architecture and Function of Biohybrid Solar Cell and Solar-to-Fuel Nanodevices. Springer Series in Materials Science, 2020, , 227-274.	0.4	2
26	Hybrid nanomaterials for artificial photosynthesis. , 2020, , .		0
27	Influence of Membrane Phase on the Optical Properties of DPH. Molecules, 2020, 25, 4264.	1.7	4
28	Conformational Changes as Driving Force for Phase Recognition: The Case of Laurdan. Langmuir, 2019, 35, 11471-11481.	1.6	21
29	Evidence for Strong and Weak Phenyl-C ₆₁ -Butyric Acid Methyl Ester Photodimer Populations in Organic Solar Cells. Chemistry of Materials, 2019, 31, 6076-6083.	3.2	11
30	Role of Metal Centers in Tuning the Electronic Properties of Graphene-Based Conductive Interfaces. Journal of Physical Chemistry C, 2019, 123, 8623-8632.	1.5	11
31	Modelling Coupled Ion Motion in Electrolyte Solutions for Lithium‣ulfur Batteries. Batteries and Supercaps, 2019, 2, 473-481.	2.4	9
32	Laurdan as a Molecular Rotor in Biological Environments. ACS Applied Bio Materials, 2019, 2, 5769-5778.	2.3	10
33	Environmental effects on the charge transfer properties of Graphene quantum dot based interfaces. International Journal of Quantum Chemistry, 2019, 119, e25882.	1.0	8
34	Azoliniums, Adducts, NHCs and Azomethine Ylides: Divergence in Wanzlick Equilibrium and Olefin Metathesis Catalyst Formation. Chemistry - A European Journal, 2018, 24, 4785-4789.	1.7	16
35	Energy Level Alignment at Interfaces Between Au (111) and Thiolated Oligophenylenes of Increasing Chain Size: Theoretical Evidence of Pinning Effects. Advanced Theory and Simulations, 2018, 1, 1700020.	1.3	13
36	Controlling the charge transfer flow at the graphene/pyrene–nitrilotriacetic acid interface. Journal of Materials Chemistry C, 2018, 6, 5046-5054.	2.7	18

#	Article	IF	Citations
37	Assessing the Charge Transfer at the Cytochrome <i>c</i> ₅₅₃ /Graphene Interface: A Multiscale Investigation. Journal of Physical Chemistry C, 2018, 122, 29405-29413.	1.5	9
38	Combining (Non)linear Optical and Fluorescence Analysis of DiD To Enhance Lipid Phase Recognition. Journal of Chemical Theory and Computation, 2018, 14, 5350-5359.	2.3	11
39	Atomistic Picture of Fluorescent Probes with Hydrocarbon Tails in Lipid Bilayer Membranes: An Investigation of Selective Affinities and Fluorescent Anisotropies in Different Environmental Phases. Langmuir, 2018, 34, 9072-9084.	1.6	15
40	Triggering On/Off States of Photoswitchable Probes in Biological Environments. Journal of the American Chemical Society, 2017, 139, 4418-4428.	6.6	20
41	Role of Edge Engineering in Photoconductivity of Graphene Nanoribbons. Journal of the American Chemical Society, 2017, 139, 7982-7988.	6.6	64
42	Unraveling Unprecedented Charge Carrier Mobility through Structure Property Relationship of Four Isomers of Didodecyl[1]benzothieno[3,2â€∢i>b⟨/i>][1]benzothiophene. Advanced Materials, 2016, 28, 7106-7114.	11.1	138
43	Charge Carrier Mobility: Unraveling Unprecedented Charge Carrier Mobility through Structure Property Relationship of Four Isomers of Didodecyl[1]benzothieno[3,2-b][1]benzothiophene (Adv.) Tj ETQq1 1	0.7/8/4/314	· rg B T /Overlo
44	Investigation into Biological Environments through (Non)linear Optics: A Multiscale Study of Laurdan Derivatives. Journal of Chemical Theory and Computation, 2016, 12, 6169-6181.	2.3	25
45	Light-enhanced liquid-phase exfoliation and current photoswitching in graphene–azobenzene composites. Nature Communications, 2016, 7, 11090.	5.8	97
46	Fused Dibenzo[<i>a</i> , <i>m</i>]rubicene: A New Bowl-Shaped Subunit of C ₇₀ Containing Two Pentagons. Journal of the American Chemical Society, 2016, 138, 8364-8367.	6.6	66
47	Tuning nitrogen species to control the charge carrier concentration in highly doped graphene. 2D Materials, 2016, 3, 011001.	2.0	27
48	Unexpected Scholl Reaction of 6,7,13,14-Tetraarylbenzo [$\langle i \rangle k \langle i \rangle$] tetraphene: Selective Formation of Five-Membered Rings in Polycyclic Aromatic Hydrocarbons. Journal of the American Chemical Society, 2016, 138, 2602-2608.	6.6	103
49	Combined Molecular Dynamics and Density Functional Theory Study of Azobenzene–Graphene Interfaces. Journal of Physical Chemistry C, 2016, 120, 6651-6658.	1.5	16
50	Influence of the supramolecular order on the electrical properties of 1D coordination polymers based materials. Nanoscale, 2016, 8, 2386-2394.	2.8	8
51	Bottomâ€Up Synthesis of Necklaceâ€Like Graphene Nanoribbons. Chemistry - an Asian Journal, 2015, 10, 2134-2138.	1.7	43
52	Sulfurâ€Annulated Hexaâ€ <i>peri</i> â€hexabenzocoronene Decorated with Phenylthio Groups at the Periphery. Angewandte Chemie, 2015, 127, 2970-2974.	1.6	9
53	Geometric and Electronic Structures of Boron(III)â€Cored Dyes Tailored by Incorporation of Heteroatoms into Ligands. Chemistry - an Asian Journal, 2015, 10, 709-714.	1.7	14
54	Sulfurâ€Annulated Hexaâ€ <i>peri</i> â€hexabenzocoronene Decorated with Phenylthio Groups at the Periphery. Angewandte Chemie - International Edition, 2015, 54, 2927-2931.	7.2	36

#	Article	IF	CITATIONS
55	First Principles Calculations of Charge Transfer Excitations in Polymer–Fullerene Complexes: Influence of Excess Energy. Advanced Functional Materials, 2015, 25, 1972-1984.	7.8	59
56	Perylene Derivatives As Useful SERRS Reporters, Including Multiplexing Analysis. ACS Applied Materials & Lamp; Interfaces, 2015, 7, 28042-28048.	4.0	14
57	Solvent-trap reaction of triazolinediones with simple alkenes: an experimental/theoretical study of thermodynamic and kinetic parameters. Tetrahedron, 2015, 71, 9474-9482.	1.0	2
58	ï€-extended [12]cycloparaphenylenes: from a hexaphenylbenzene cyclohexamer to its unexpected C2-symmetric congener. Chemical Science, 2015, 6, 7072-7078.	3.7	32
59	Work function modification of the (111) gold surface covered by long alkanethiol-based self-assembled monolayers. Physical Chemistry Chemical Physics, 2014, 16, 2866.	1.3	26
60	Light-induced reversible modification of the work function of a new perfluorinated biphenyl azobenzene chemisorbed on Au (111). Nanoscale, 2014, 6, 8969-8977.	2.8	31
61	Coherent Electron Transmission across Nanographenes Tethered to Gold Electrodes: Influence of Linker Topology, Ribbon Width, and Length. Journal of Physical Chemistry C, 2014, 118, 7643-7652.	1.5	4
62	Photoswitching Azobenzene Derivatives in Single Molecule Junctions: A Theoretical Insight into the <i>I</i> VVCharacteristics. Journal of Physical Chemistry C, 2014, 118, 18721-18729.	1.5	32
63	Large Work Function Shift of Gold Induced by a Novel Perfluorinated Azobenzeneâ€Based Selfâ€Assembled Monolayer. Advanced Materials, 2013, 25, 432-436.	11.1	93
64	Polymorphism, Fluorescence, and Optoelectronic Properties of a Borazine Derivative. Chemistry - A European Journal, 2013, 19, 7771-7779.	1.7	49
65	Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons. Nature Communications, 2013, 4, 2646.	5.8	187
66	Graphene Nanoribbons as Low Band Gap Donor Materials for Organic Photovoltaics: Quantum Chemical Aided Design. ACS Nano, 2012, 6, 5539-5548.	7.3	99
67	Photoinduced work function changes by isomerization of a densely packed azobenzene-based SAM on Au: a joint experimental and theoretical study. Physical Chemistry Chemical Physics, 2011, 13, 14302.	1.3	61
68	The Mechanism of the Acidâ€Catalyzed Benzidine Rearrangement of Hydrazobenzene: A Theoretical Study. European Journal of Organic Chemistry, 2011, 2011, 2326-2333.	1.2	27