Maria Seton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1696676/publications.pdf

Version: 2024-02-01

91712 66234 10,885 75 42 69 h-index citations g-index papers 80 80 80 7403 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	1,539
2	Global continental and ocean basin reconstructions since 200Ma. Earth-Science Reviews, 2012, 113, 212-270.	4.0	1,459
3	Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea Breakup. Annual Review of Earth and Planetary Sciences, 2016, 44, 107-138.	4.6	724
4	Long-Term Sea-Level Fluctuations Driven by Ocean Basin Dynamics. Science, 2008, 319, 1357-1362.	6.0	610
5	Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change, 2016, 146, 226-250.	1.6	553
6	GPlates: Building a Virtual Earth Through Deep Time. Geochemistry, Geophysics, Geosystems, 2018, 19, 2243-2261.	1.0	392
7	Catastrophic initiation of subduction following forced convergence across fracture zones. Earth and Planetary Science Letters, 2003, 212, 15-30.	1.8	381
8	A Global Plate Model Including Lithospheric Deformation Along Major Rifts and Orogens Since the Triassic. Tectonics, 2019, 38, 1884-1907.	1.3	316
9	Controls on back-arc basin formation. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	1.0	301
10	The role of oceanic plateau subduction in the Laramide orogeny. Nature Geoscience, 2010, 3, 353-357.	5.4	290
11	Major Australian-Antarctic Plate Reorganization at Hawaiian-Emperor Bend Time. Science, 2007, 318, 83-86.	6.0	264
12	The Cretaceous and Cenozoic tectonic evolution of Southeast Asia. Solid Earth, 2014, 5, 227-273.	1.2	234
13	Zealandia: Earth's Hidden Continent. GSA Today, 2017, , 27-35.	1.1	216
14	Plate tectonic reconstructions with continuously closing plates. Computers and Geosciences, 2012, 38, 35-42.	2.0	214
15	Ridge subduction sparked reorganization of the Pacific plateâ€mantle system 60–50 million years ago. Geophysical Research Letters, 2015, 42, 1732-1740.	1.5	170
16	A global-scale plate reorganization event at 105â^100Ma. Earth and Planetary Science Letters, 2012, 355-356, 283-298.	1.8	165
17	The tectonic evolution of the Arctic since Pangea breakup: Integrating constraints from surface geology and geophysics with mantle structure. Earth-Science Reviews, 2013, 124, 148-183.	4.0	153
18	Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic. Earth-Science Reviews, 2016, 162, 293-337.	4.0	151

#	Article	IF	CITATIONS
19	An expression of Philippine Sea plate rotation: the Parece Vela and Shikoku Basins. Tectonophysics, 2004, 394, 69-86.	0.9	150
20	A Global Data Set of Presentâ€Day Oceanic Crustal Age and Seafloor Spreading Parameters. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009214.	1.0	133
21	Lower mantle structure from paleogeographically constrained dynamic Earth models. Geochemistry, Geophysics, Geosystems, 2013, 14, 44-63.	1.0	120
22	Subduction controls the distribution and fragmentation of Earth's tectonic plates. Nature, 2016, 535, 140-143.	13.7	112
23	Mid-Cretaceous seafloor spreading pulse: Fact or fiction?. Geology, 2009, 37, 687-690.	2.0	105
24	Tectonic speed limits from plate kinematic reconstructions. Earth and Planetary Science Letters, 2015, 418, 40-52.	1.8	102
25	Community infrastructure and repository for marine magnetic identifications. Geochemistry, Geophysics, Geosystems, 2014, 15, 1629-1641.	1.0	97
26	Geological, tomographic, kinematic and geodynamic constraints on the dynamics of sinking slabs. Journal of Geodynamics, 2014, 73, 1-13.	0.7	93
27	Topographic asymmetry of the South Atlantic from global models of mantle flow and lithospheric stretching. Earth and Planetary Science Letters, 2014, 387, 107-119.	1.8	92
28	Long-term interaction between mid-ocean ridges and mantle plumes. Nature Geoscience, 2015, 8, 479-483.	5.4	92
29	Modeling the Miocene climatic optimum: Ocean circulation. Paleoceanography, 2012, 27, n/a-n/a.	3.0	88
30	Reconstructing Ontong Java Nui: Implications for Pacific absolute plate motion, hotspot drift and true polar wander. Earth and Planetary Science Letters, 2012, 331-332, 140-151.	1.8	87
31	The Late Cretaceous to recent tectonic history of the Pacific Ocean basin. Earth-Science Reviews, 2016, 154, 138-173.	4.0	83
32	Geologic and kinematic constraints on Late Cretaceous to mid Eocene plate boundaries in the southwest Pacific. Earth-Science Reviews, 2015, 140, 72-107.	4.0	75
33	Insights on the kinematics of the Indiaâ€Eurasia collision from global geodynamic models. Geochemistry, Geophysics, Geosystems, 2012, 13, .	1.0	74
34	Sunda-Java trench kinematics, slab window formation and overriding plate deformation since the Cretaceous. Earth and Planetary Science Letters, 2007, 255, 445-457.	1.8	71
35	Middle Miocene tectonic boundary conditions for use in climate models. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	71
36	A suite of early Eocene (~ 55 Ma) climate model boundary conditions. Geoscientific Model Development, 2014, 7, 2077-2090.	1.3	71

#	Article	IF	Citations
37	A reconstruction of the North Atlantic since the earliest Jurassic. Basin Research, 2018, 30, 160-185.	1.3	57
38	Early to Middle Miocene monsoon climate in Australia. Geology, 2011, 39, 3-6.	2.0	56
39	Kinematics and extent of the Piemontâ \in "Liguria Basin â \in " implications for subduction processes in the Alps. Solid Earth, 2021, 12, 885-913.	1.2	55
40	Towards community-driven paleogeographic reconstructions: integrating open-access paleogeographic and paleobiology data with plate tectonics. Biogeosciences, 2013, 10, 1529-1541.	1.3	54
41	Seawater chemistry driven by supercontinent assembly, breakup, and dispersal. Geology, 2013, 41, 907-910.	2.0	50
42	Convergence of tectonic reconstructions and mantle convection models for significant fluctuations in seafloor spreading. Earth and Planetary Science Letters, 2013, 383, 92-100.	1.8	48
43	Enigmatic formation of the Norfolk Basin, SW Pacific: A plume influence on back-arc extension. Geochemistry, Geophysics, Geosystems, 2004, 5, .	1.0	43
44	Signatures of downgoing plate-buoyancy driven subduction in Cenozoic plate motions. Physics of the Earth and Planetary Interiors, 2011, 184, 1-13.	0.7	42
45	The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser. PLoS ONE, 2016, 11, e0150883.	1.1	41
46	A Quantitative Tomotectonic Plate Reconstruction of Western North America and the Eastern Pacific Basin. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009117.	1.0	41
47	Regional volcanism of northern Zealandia: post-Gondwana break-up magmatism on an extended, submerged continent. Geological Society Special Publication, 2018, 463, 199-226.	0.8	39
48	Tectonic evolution of Western Tethys from Jurassic to present day: coupling geological and geophysical data with seismic tomography models. International Geology Review, 2016, 58, 1616-1645.	1.1	38
49	Organization of the tectonic plates in the last 200 Myr. Earth and Planetary Science Letters, 2013, 373, 93-101.	1.8	36
50	Sea-level fluctuations driven by changes in global ocean basin volume following supercontinent break-up. Earth-Science Reviews, 2020, 208, 103293.	4.0	36
51	Climate model sensitivity to atmospheric CO2 concentrations for the middle Miocene. Global and Planetary Change, 2009, 67, 129-140.	1.6	35
52	Melanesian back-arc basin and arc development: Constraints from the eastern Coral Sea. Gondwana Research, 2016, 39, 77-95.	3.0	34
53	Tectonic evolution of the southwest Pacific using constraints from backarc basins. , 2003, , .		34
54	Intraplate volcanism triggered by bursts in slab flux. Science Advances, 2020, 6, .	4.7	32

#	Article	IF	CITATIONS
55	Circumâ€Arctic mantle structure and longâ€wavelength topography since the Jurassic. Journal of Geophysical Research: Solid Earth, 2014, 119, 7889-7908.	1.4	31
56	Revision of Paleogene plate motions in the Pacific and implications for the Hawaiian-Emperor bend. Geology, 2015, 43, 455-458.	2.0	31
57	Comparing early to middle Miocene terrestrial climate simulations with geological data. , 2010, 6, 952-961.		28
58	Large fluctuations of shallow seas in low-lying Southeast Asia driven by mantle flow. Geochemistry, Geophysics, Geosystems, 2016, 17, 3589-3607.	1.0	28
59	Climate model sensitivity to changes in Miocene paleotopography. Australian Journal of Earth Sciences, 2009, 56, 1049-1059.	0.4	26
60	Geodynamic reconstruction of an accreted Cretaceous back-arc basin in the Northern Andes. Journal of Geodynamics, 2018, 121, 115-132.	0.7	21
61	Chapter 2 Geodynamics of the SW Pacific: a brief review and relations with New Caledonian geology. Geological Society Memoir, 2020, 51, 13-26.	0.9	20
62	No Change in Southern Ocean Circulation in the Indian Ocean From the Eocene Through Late Oligocene. Paleoceanography and Paleoclimatology, 2018, 33, 152-167.	1.3	15
63	Kinematic and geodynamic evolution of the Isthmus of Panama region: Implications for Central American Seaway closure. Bulletin of the Geological Society of America, 2021, 133, 867-884.	1.6	15
64	Magma production along the Lord Howe Seamount Chain, northern Zealandia. Geological Magazine, 2019, 156, 1605-1617.	0.9	11
65	Early to middle Miocene monsoon climate in Australia: REPLY. Geology, 2012, 40, e274-e274.	2.0	4
66	Revision of Paleogene plate motions in the Pacific and implications for the Hawaiian-Emperor bend: REPLY. Geology, 2016, 44, e385-e385.	2.0	3
67	Eocene nephelinite and basanite from the Fairway Ridge, North Zealandia. Deep-Sea Research Part I: Oceanographic Research Papers, 2019, 152, 103101.	0.6	2
68	Paleophysiography of Ocean Basins. , 2015, , 1-15.		2
69	Plate Motion. , 2014, , 1-10.		2
70	Seawater chemistry driven by supercontinent assembly, breakup and dispersal: REPLY. Geology, 2014, 42, e335-e335.	2.0	1
71	Tectonics and geodynamics of the eastern Tethys and northern Gondwana since the Jurassic. ASEG Extended Abstracts, 2018, 2018, 1-6.	0.1	1
72	Exploring new drilling prospects in the southwest Pacific. Scientific Drilling, 0, 17, 45-50.	1.0	1

#	Article	IF	CITATIONS
73	Scientific Drilling in the Southwest Pacific Ocean. Eos, 2013, 94, 101-101.	0.1	0
74	Geophysical and geological characterisation of dredge locations from RV Southern Surveyor voyage ss2012_v06 (ECOSATI): hotspot activity in northern Zealandia. ASEG Extended Abstracts, 2018, 2018, 1-8.	0.1	0
75	Reflections on solid Earth research. Nature Reviews Earth & Environment, 2021, 2, 21-25.	12.2	0