Zhu Mao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/169626/publications.pdf

Version: 2024-02-01

37 papers	989	16	31
	citations	h-index	g-index
38	38	38	1575
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Enhanced acetic acid sensing of MOF-derived î±-Fe ₂ O ₃ /ZrO ₂ arising from phase junction and defects. New Journal of Chemistry, 2022, 46, 11368-11376.	2.8	2
2	Probing the Open-Circuit Voltage Improvement of DSSC via Raman Spectroscopy: <i>In Situ</i> Dynamic Tracking Photoanode/Electrolyte Interfaces. ACS Applied Energy Materials, 2022, 5, 8391-8399.	5.1	3
3	Charge Transfer in 4-Mercaptobenzoic Acid-Stabilized Au Nanorod@Cu ₂ O Nanostructures: Implications for Photocatalysis and Photoelectric Devices. ACS Applied Nano Materials, 2021, 4, 381-388.	5.0	15
4	Photo-Induced Charge Transfer Enhancement for SERS in a SiO ₂ â€"Agâ€"Reduced Graphene Oxide System. ACS Applied Materials & SiO (13, 5699-5705).	8.0	18
5	A SERS Study of Charge Transfer Process in Au Nanorod–MBA@Cu2O Assemblies: Effect of Length to Diameter Ratio of Au Nanorods. Nanomaterials, 2021, 11, 867.	4.1	12
6	Silver nanoparticle-decorated TiO2 nanotube array for solid-phase microextraction and SERS detection of antibiotic residue in milk. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 255, 119652.	3.9	20
7	Surface-Enhanced Raman Scattering Activity of ZrO2 Nanoparticles: Effect of Tetragonal and Monoclinic Phases. Nanomaterials, 2021, 11, 2162.	4.1	6
8	Operando Raman spectroscopic evidence of electron–phonon interactions in NiO/TiO ₂ pn junction photodetectors. Chemical Communications, 2021, 57, 12333-12336.	4.1	5
9	Innentitelbild: Direct Dynamic Evidence of Charge Separation in a Dyeâ€Sensitized Solar Cell Obtained under Operando Conditions by Raman Spectroscopy (Angew. Chem. 27/2020). Angewandte Chemie, 2020, 132, 10758-10758.	2.0	O
10	Direct Dynamic Evidence of Charge Separation in a Dyeâ€Sensitized Solar Cell Obtained under Operando Conditions by Raman Spectroscopy. Angewandte Chemie, 2020, 132, 10872-10876.	2.0	5
11	Flexible and Reusable Ag Coated TiO2 Nanotube Arrays for Highly Sensitive SERS Detection of Formaldehyde. Molecules, 2020, 25, 1199.	3.8	24
12	Direct Dynamic Evidence of Charge Separation in a Dyeâ€Sensitized Solar Cell Obtained under Operando Conditions by Raman Spectroscopy. Angewandte Chemie - International Edition, 2020, 59, 10780-10784.	13.8	16
13	Boosting ppb-level triethylamine sensing of ZnO: adjusting proportions of electron donor defects. Journal of Materials Chemistry C, 2020, 8, 6734-6742.	5.5	25
14	In Situ Raman Investigation of TiO2 Nanotube Array-Based Ultraviolet Photodetectors: Effects of Nanotube Length. Molecules, 2020, 25, 1854.	3.8	5
15	Improved Surface-Enhanced Raman Scattering Properties of ZrO2 Nanoparticles by Zn Doping. Nanomaterials, 2019, 9, 983.	4.1	29
16	Direct Observation of Enhanced Raman Scattering on Nano-Sized ZrO2 Substrate: Charge-Transfer Contribution. Frontiers in Chemistry, 2019, 7, 245.	3.6	19
17	Nickel Nanowires Combined with Surface-Enhanced Raman Spectroscopy: Application in Label-Free Detection of Cytochrome c-Mediated Apoptosis. Analytical Chemistry, 2019, 91, 1213-1216.	6.5	24
18	In situ semi-quantitative assessment of single-cell viability by resonance Raman spectroscopy. Chemical Communications, 2018, 54, 7135-7138.	4.1	10

#	Article	IF	Citations
19	Investigation of charge transfer at the TiO ₂ â€"MBAâ€"Au interface based on surface-enhanced Raman scattering: SPR contribution. Physical Chemistry Chemical Physics, 2018, 20, 5666-5673.	2.8	25
20	Reduced graphene oxide (RGO)/Cu2S composite as catalytic counter electrode for quantum dot-sensitized solar cells. Electrochimica Acta, 2018, 277, 50-58.	5.2	61
21	Ionothermal synthesis and characterization of two polyoxometalate-based supramolecules. Chemical Research in Chinese Universities, 2016, 32, 527-529.	2.6	4
22	Vibrational spectroscopy and density functional theory study of 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 135, 1-6.	3.9	4
23	Fabrication of Au hybrid protein chips and its application to SERS-based bioassay. Vibrational Spectroscopy, 2014, 70, 49-52.	2.2	6
24	Predictive Value of the Surface-Enhanced Resonance Raman Scattering-Based MTT Assay: A Rapid and Ultrasensitive Method for Cell Viability in Situ. Analytical Chemistry, 2013, 85, 7361-7368.	6.5	33
25	SERS study of Co-doped TiO2 nanoparticles. Chemical Research in Chinese Universities, 2013, 29, 751-754.	2.6	15
26	Simultaneous enhancement of phonons modes with molecular vibrations due to Mg doping of a TiO2 substrate. RSC Advances, 2013, 3, 20891.	3.6	15
27	Fabrication of a Bionic Needle with both Super-Hydrophobic and Antibacterial Properties. Journal of Bionic Engineering, 2013, 10, 377-382.	5.0	20
28	Multiphonon Resonant Raman Scattering and Photoinduced Charge-Transfer Effects at ZnO–Molecule Interfaces. Journal of Physical Chemistry C, 2012, 116, 26908-26918.	3.1	37
29	Interfacial Charge-Transfer Effects in Semiconductor–Molecule–Metal Structures: Influence of Contact Variation. Journal of Physical Chemistry C, 2012, 116, 14701-14710.	3.1	40
30	Raman Investigation of Nanosized TiO ₂ : Effect of Crystallite Size and Quantum Confinement. Journal of Physical Chemistry C, 2012, 116, 8792-8797.	3.1	269
31	Detection of protein deposition within latent fingerprints by surface-enhanced Raman spectroscopy imaging. Nanoscale, 2012, 4, 2333.	5.6	83
32	Effects of Mn doping on surface enhanced Raman scattering properties of TiO2 nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 95, 213-217.	3.9	40
33	Tunable two dimensional protein patterns through self-assembly nanosphere template. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 96, 395-400.	3.9	4
34	Metal–Semiconductor Contacts Induce the Charge-Transfer Mechanism of Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2011, 115, 18378-18383.	3.1	67
35	Tunable plasmon properties of Fe2O3@Ag substrate for surface-enhanced Raman scattering. Analytical Methods, 2011, 3, 1622.	2.7	15
36	SERS detection of protein biochip fabricated by etching polystyrene template. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 82, 456-460.	3.9	6

#	Article	IF	CITATIONS
37	Fabrication and SERS properties of Ag/Cu2S composite micro–nanostructures over Cu foil. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 79, 1247-1250.	3.9	7