Susanna Brighenti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1696208/publications.pdf

Version: 2024-02-01

46 papers

3,266 citations

257101 24 h-index 243296 44 g-index

48 all docs

48 docs citations

48 times ranked

8588 citing authors

#	Article	IF	CITATIONS
1	Immunosuppressive Features of the Microenvironment in Lymph Nodes Granulomas from Tuberculosis and HIV–Co-Infected Patients. American Journal of Pathology, 2022, 192, 653-670.	1.9	7
2	The Karolinska <scp>KI</scp> /K <scp>COVID</scp> â€19 immune atlas: An open resource for immunological research and educational purposes. Scandinavian Journal of Immunology, 2022, 96, .	1.3	4
3	SARSâ€CoVâ€2â€specific humoral and cellular immunity persists through 9 months irrespective of COVIDâ€19 severity at hospitalisation. Clinical and Translational Immunology, 2021, 10, e1306.	1.7	36
4	Immunomodulatory Agents Combat Multidrug-Resistant Tuberculosis by Improving Antimicrobial Immunity. Journal of Infectious Diseases, 2021, 224, 332-344.	1.9	13
5	High-dimensional profiling reveals phenotypic heterogeneity and disease-specific alterations of granulocytes in COVID-19. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	52
6	Major alterations in the mononuclear phagocyte landscape associated with COVID-19 severity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	104
7	Host and Pathogen Communication in the Respiratory Tract: Mechanisms and Models of a Complex Signaling Microenvironment. Frontiers in Medicine, 2020, 7, 537.	1.2	3
8	Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19. Cell, 2020, 183, 158-168.e14.	13.5	1,561
9	Slow radiological improvement and persistent low-grade inflammation after chemotherapy in tuberculosis patients with type 2 diabetes. BMC Infectious Diseases, 2020, 20, 933.	1.3	8
10	Targeted Nutrition in Chronic Disease. Nutrients, 2020, 12, 1682.	1.7	15
11	MAIT cell activation and dynamics associated with COVID-19 disease severity. Science Immunology, 2020, 5, .	5.6	147
12	Polarization of M1 and M2 Human Monocyte-Derived Cells and Analysis with Flow Cytometry upon & lt;em> Mycobacterium tuberculosis Infection. Journal of Visualized Experiments, 2020, , .	0.2	26
13	Vitamin D and Phenylbutyrate Supplementation Does Not Modulate Gut Derived Immune Activation in HIV-1. Nutrients, 2019, 11, 1675.	1.7	10
14	Daily Nutritional Supplementation with Vitamin D3 and Phenylbutyrate to Treatment-Na \tilde{A} -ve HIV Patients Tested in a Randomized Placebo-Controlled Trial. Nutrients, 2019, 11, 133.	1.7	11
15	Polarization of Human Monocyte-Derived Cells With Vitamin D Promotes Control of Mycobacterium tuberculosis Infection. Frontiers in Immunology, 2019, 10, 3157.	2.2	32
16	Daily adjunctive therapy with vitamin <scp>D</scp> ₃ and phenylbutyrate supports clinical recovery from pulmonary tuberculosis: a randomized controlled trial in Ethiopia. Journal of Internal Medicine, 2018, 284, 292-306.	2.7	42
17	Enhanced CD8+ cytolytic T cell responses in the peripheral circulation of patients with sarcoidosis and non-Löfgren's disease. Respiratory Medicine, 2018, 138, S38-S44.	1.3	15
18	Vitamin D and tuberculosis: where next?. Journal of Internal Medicine, 2018, 284, 145-162.	2.7	43

#	Article	IF	CITATIONS
19	Friends and foes of tuberculosis: modulation of protective immunity. Journal of Internal Medicine, 2018, 284, 125-144.	2.7	12
20	Perspectives for personalized therapy for patients with multidrugâ€resistant tuberculosis. Journal of Internal Medicine, 2018, 284, 163-188.	2.7	33
21	Toward the understanding of human tuberculosis. Journal of Internal Medicine, 2018, 284, 113-115.	2.7	1
22	Prostaglandin E ₂ suppresses hCAP18/LLâ€37 expression in human macrophages <i>via</i> EP2/EP4: implications for treatment of <i>Mycobacterium tuberculosis</i> i>infection. FASEB Journal, 2018, 32, 2827-2840.	0.2	30
23	Vitamin D3 Status and the Association with Human Cathelicidin Expression in Patients with Different Clinical Forms of Active Tuberculosis. Nutrients, 2018, 10, 721.	1.7	20
24	Safety and immunogenicity of the novel H4:IC31 tuberculosis vaccine candidate in BCG-vaccinated adults: Two phase I dose escalation trials. Vaccine, 2017, 35, 1652-1661.	1.7	47
25	IL-7Î'5 protein is expressed in human tissues and induces expression of the oxidized low density lipoprotein receptor 1 (OLR1) in CD14+ monocytes. International Journal of Infectious Diseases, 2017, 59, 29-36.	1.5	2
26	Humoral immune profiling of mycobacterial antigen recognition in sarcoidosis and Löfgren's syndrome using high-content peptide microarrays. International Journal of Infectious Diseases, 2017, 56, 167-175.	1.5	13
27	Peptide microarray-based characterization of antibody responses to host proteins after bacille Calmette–Guérin vaccination. International Journal of Infectious Diseases, 2017, 56, 140-154.	1.5	21
28	Regulation of Immunity to Tuberculosis. , 2017, , 73-93.		1
29	Inhibition of Tissue Matrix Metalloproteinases Interferes with Mycobacterium tuberculosis-Induced Granuloma Formation and Reduces Bacterial Load in a Human Lung Tissue Model. Frontiers in Microbiology, 2017, 8, 2370.	1.5	39
30	Regulation of Immunity to Tuberculosis. Microbiology Spectrum, 2016, 4, .	1.2	18
31	A 3D Human Lung Tissue Model for Functional Studies on Mycobacterium tuberculosis Infection. Journal of Visualized Experiments, 2015, , .	0.2	27
32	Significant Effects of Oral Phenylbutyrate and Vitamin D3 Adjunctive Therapy in Pulmonary Tuberculosis: A Randomized Controlled Trial. PLoS ONE, 2015, 10, e0138340.	1.1	125
33	B in TB: B Cells as Mediators of Clinically Relevant Immune Responses in Tuberculosis. Clinical Infectious Diseases, 2015, 61, S225-S234.	2.9	60
34	Pulmonary tuberculosis patients with a vitamin D deficiency demonstrate low local expression of the antimicrobial peptide LL-37 but enhanced FoxP3+ regulatory T cells and IgG-secreting cells. Clinical Immunology, 2015, 156, 85-97.	1.4	51
35	Phenylbutyrate induces LL-37-dependent autophagy and intracellular killing of <i>Mycobacterium tuberculosis</i> in human macrophages. Autophagy, 2015, 11, 1688-1699.	4.3	162
36	Modeling <i>Mycobacterium tuberculosis</i> early granuloma formation in experimental human lung tissue. DMM Disease Models and Mechanisms, 2014, 7, 281-8.	1.2	53

#	Article	IF	CITATION
37	Progression of clinical tuberculosis is associated with a Th2 immune response signature in combination with elevated levels of SOCS3. Clinical Immunology, 2014, 151, 84-99.	1.4	63
38	BCG-specific IgG-secreting peripheral plasmablasts as a potential biomarker of active tuberculosis in HIV negative and HIV positive patients. Thorax, 2013, 68, 269-276.	2.7	32
39	Plasmacytoid Dendritic Cells Infiltrate the Skin in Positive Tuberculin Skin Test Indurations. Journal of Investigative Dermatology, 2012, 132, 114-123.	0.3	24
40	Local Immune Responses in Human Tuberculosis: Learning From the Site of Infection. Journal of Infectious Diseases, 2012, 205, S316-S324.	1.9	78
41	Prime-Boost Vaccination with rBCG/rAd35 Enhances CD8+ Cytolytic T-Cell Responses in Lesions from Mycobacterium Tuberculosis-Infected Primates. Molecular Medicine, 2012, 18, 647-658.	1.9	36
42	A new potential biomarker for childhood tuberculosis. Thorax, 2011, 66, 727-729.	2.7	14
43	Increased (6 exon) interleukin-7 production after M. tuberculosis infection and soluble interleukin-7 receptor expression in lung tissue. Genes and Immunity, 2011, 12, 513-522.	2.2	24
44	Induction and regulation of CD8+ cytolytic T cells in human tuberculosis and HIV infection. Biochemical and Biophysical Research Communications, 2010, 396, 50-57.	1.0	28
45	Compartmentalization of Immune Responses in Human Tuberculosis. American Journal of Pathology, 2009, 174, 2211-2224.	1.9	99
46	How Mycobacterium tuberculosis Manipulates Innate and Adaptive Immunity – New Views of an Old Topic. , 0, , .		5