David T Leong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1696099/publications.pdf Version: 2024-02-01

		13865	15266
167	16,517	67	126
papers	citations	h-index	g-index
173	173	173	18997
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	From Aggregation-Induced Emission of Au(I)–Thiolate Complexes to Ultrabright Au(0)@Au(I)–Thiolate Core–Shell Nanoclusters. Journal of the American Chemical Society, 2012, 134, 16662-16670.	13.7	1,340
2	Nanotheranostics Ë— Application and Further Development of Nanomedicine Strategies for Advanced Theranostics. Theranostics, 2014, 4, 660-677.	10.0	499
3	Antimicrobial silver nanomaterials. Coordination Chemistry Reviews, 2018, 357, 1-17.	18.8	499
4	Identification of a Highly Luminescent Au ₂₂ (SG) ₁₈ Nanocluster. Journal of the American Chemical Society, 2014, 136, 1246-1249.	13.7	490
5	Antimicrobial Gold Nanoclusters. ACS Nano, 2017, 11, 6904-6910.	14.6	469
6	Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE–cadherin. Nature Communications, 2013, 4, 1673.	12.8	401
7	Ultrasmall Au _{10â^'12} (SG) _{10â^'12} Nanomolecules for High Tumor Specificity and Cancer Radiotherapy. Advanced Materials, 2014, 26, 4565-4568.	21.0	386
8	Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nature Nanotechnology, 2019, 14, 279-286.	31.5	367
9	Glutathione-Protected Silver Nanoclusters as Cysteine-Selective Fluorometric and Colorimetric Probe. Analytical Chemistry, 2013, 85, 1913-1919.	6.5	312
10	Antimicrobial Cluster Bombs: Silver Nanoclusters Packed with Daptomycin. ACS Nano, 2016, 10, 7934-7942.	14.6	304
11	Toward Understanding the Growth Mechanism: Tracing All Stable Intermediate Species from Reduction of Au(I)–Thiolate Complexes to Evolution of Au ₂₅ Nanoclusters. Journal of the American Chemical Society, 2014, 136, 10577-10580.	13.7	294
12	Balancing the Rate of Cluster Growth and Etching for Gramâ€Scale Synthesis of Thiolateâ€Protected Au ₂₅ Nanoclusters with Atomic Precision. Angewandte Chemie - International Edition, 2014, 53, 4623-4627.	13.8	276
13	Understanding and exploiting nanoparticles' intimacy with the blood vessel and blood. Chemical Society Reviews, 2015, 44, 8174-8199.	38.1	268
14	Type 1 and 2 Immunity Following Vaccination Is Influenced by Nanoparticle Size:Â Formulation of a Model Vaccine for Respiratory Syncytial Virus. Molecular Pharmaceutics, 2007, 4, 73-84.	4.6	258
15	Highly luminescent silver nanoclusters with tunable emissions: cyclic reduction–decomposition synthesis and antimicrobial properties. NPG Asia Materials, 2013, 5, e39-e39.	7.9	237
16	Directing Assembly and Disassembly of 2D MoS ₂ Nanosheets with DNA for Drug Delivery. ACS Applied Materials & Interfaces, 2017, 9, 15286-15296.	8.0	232
17	Nanoparticles' interactions with vasculature in diseases. Chemical Society Reviews, 2019, 48, 5381-5407.	38.1	231
18	Understanding seed-mediated growth of gold nanoclusters at molecular level. Nature Communications, 2017, 8, 927.	12.8	228

#	Article	IF	CITATIONS
19	Gold Nanoparticles Induced Endothelial Leakiness Depends on Particle Size and Endothelial Cell Origin. ACS Nano, 2017, 11, 5020-5030.	14.6	218
20	Ultrasmall Glutathione-Protected Gold Nanoclusters as Next Generation Radiotherapy Sensitizers with High Tumor Uptake and High Renal Clearance. Scientific Reports, 2015, 5, 8669.	3.3	212
21	Highly Luminescent Thiolated Gold Nanoclusters Impregnated in Nanogel. Chemistry of Materials, 2016, 28, 4009-4016.	6.7	212
22	Lowâ€Dimensional Transition Metal Dichalcogenide Nanostructures Based Sensors. Advanced Functional Materials, 2016, 26, 7034-7056.	14.9	208
23	ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters. Blood, 2011, 118, 3990-4002.	1.4	203
24	Back to Basics: Exploiting the Innate Physicoâ€chemical Characteristics of Nanomaterials for Biomedical Applications. Advanced Functional Materials, 2014, 24, 5936-5955.	14.9	192
25	Nanoparticles Strengthen Intracellular Tension and Retard Cellular Migration. Nano Letters, 2014, 14, 83-88.	9.1	191
26	Lighting up thiolated Au@Ag nanoclusters via aggregation-induced emission. Nanoscale, 2014, 6, 157-161.	5.6	186
27	The role of the tumor suppressor p53 pathway in the cellular DNA damage response to zinc oxide nanoparticles. Biomaterials, 2011, 32, 8218-8225.	11.4	185
28	Vaccines that facilitate antigen entry into dendritic cells. Immunology and Cell Biology, 2004, 82, 506-516.	2.3	181
29	Nanoarchitectonics beyond Selfâ€Assembly: Challenges to Create Bioâ€Like Hierarchic Organization. Angewandte Chemie - International Edition, 2020, 59, 15424-15446.	13.8	176
30	Engineering gold-based radiosensitizers for cancer radiotherapy. Materials Horizons, 2017, 4, 817-831.	12.2	173
31	Engineering Functional Metal Materials at the Atomic Level. Advanced Materials, 2018, 30, e1802751.	21.0	170
32	Defect engineered bioactive transition metals dichalcogenides quantum dots. Nature Communications, 2019, 10, 41.	12.8	168
33	Nature-Inspired DNA Nanosensor for Real-Time <i>in Situ</i> Detection of mRNA in Living Cells. ACS Nano, 2015, 9, 5609-5617.	14.6	159
34	The influence of lysosomal stability of silver nanomaterials on their toxicity to human cells. Biomaterials, 2014, 35, 6707-6715.	11.4	158
35	The Challenge to Measure Cell Proliferation in Two and Three Dimensions. Tissue Engineering, 2005, 11, 182-191.	4.6	152
36	Clinical Applications of Carbon Nanomaterials in Diagnostics and Therapy. Advanced Materials, 2018, 30, e1802368.	21.0	149

#	Article	IF	CITATIONS
37	Nanoarchitectonics for Hybrid and Related Materials for Bioâ€Oriented Applications. Advanced Functional Materials, 2018, 28, 1702905.	14.9	149
38	Micropatterned matrix directs differentiation of human mesenchymal stem cells towards myocardial lineage. Experimental Cell Research, 2010, 316, 1159-1168.	2.6	148
39	Cellular processing and destinies of artificial DNA nanostructures. Chemical Society Reviews, 2016, 45, 4199-4225.	38.1	146
40	Effect of zinc oxide nanomaterials-induced oxidative stress on the p53 pathway. Biomaterials, 2013, 34, 10133-10142.	11.4	141
41	Ultrasmall Ag+-rich nanoclusters as highly efficient nanoreservoirs for bacterial killing. Nano Research, 2014, 7, 301-307.	10.4	139
42	Nanoparticle Density: A Critical Biophysical Regulator of Endothelial Permeability. ACS Nano, 2017, 11, 2764-2772.	14.6	133
43	Autocrine Fibroblast Growth Factor 2 Increases the Multipotentiality of Human Adipose-Derived Mesenchymal Stem Cells. Stem Cells, 2008, 26, 1598-1608.	3.2	131
44	Tuning Endothelial Permeability with Functionalized Nanodiamonds. ACS Nano, 2016, 10, 1170-1181.	14.6	129
45	Biophysical Responses upon the Interaction of Nanomaterials with Cellular Interfaces. Accounts of Chemical Research, 2013, 46, 782-791.	15.6	125
46	Mechanistic Investigation of the Biological Effects of SiO ₂ , TiO ₂ , and ZnO Nanoparticles on Intestinal Cells. Small, 2015, 11, 3458-3468.	10.0	125
47	Surface Ligand Chemistry of Gold Nanoclusters Determines Their Antimicrobial Ability. Chemistry of Materials, 2018, 30, 2800-2808.	6.7	115
48	Novel Theranostic DNA Nanoscaffolds for the Simultaneous Detection and Killing of <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> . ACS Applied Materials & Interfaces, 2014, 6, 21822-21831.	8.0	107
49	Targeting Endothelial Cell Junctions with Negatively Charged Gold Nanoparticles. Chemistry of Materials, 2018, 30, 3759-3767.	6.7	106
50	Pro-inflammatory responses of RAW264.7 macrophages when treated with ultralow concentrations of silver, titanium dioxide, and zinc oxide nanoparticles. Journal of Hazardous Materials, 2015, 297, 146-152.	12.4	99
51	Biomimicry 3D Gastrointestinal Spheroid Platform for the Assessment of Toxicity and Inflammatory Effects of Zinc Oxide Nanoparticles. Small, 2015, 11, 702-712.	10.0	98
52	Exposure to Titanium Dioxide Nanoparticles Induces Autophagy in Primary Human Keratinocytes. Small, 2013, 9, 387-392.	10.0	97
53	DNA Nanostructures Carrying Stoichiometrically Definable Antibodies. Small, 2016, 12, 5601-5611.	10.0	97
54	Ultrabright organic dots with aggregation-induced emission characteristics for cell tracking. Biomaterials, 2014, 35, 8669-8677.	11.4	96

#	Article	IF	CITATIONS
55	MicroRNA-34c Inversely Couples the Biological Functions of the Runt-related Transcription Factor RUNX2 and the Tumor Suppressor p53 in Osteosarcoma. Journal of Biological Chemistry, 2013, 288, 21307-21319.	3.4	95
56	Tuning the Activity of Platinum(IV) Anticancer Complexes through Asymmetric Acylation. Journal of Medicinal Chemistry, 2012, 55, 7571-7582.	6.4	92
57	Presentation matters: Identity of gold nanocluster capping agent governs intracellular uptake and cell metabolism. Nano Research, 2014, 7, 805-815.	10.4	88
58	Nano-hydroxyapatite and Nano-titanium Dioxide Exhibit Different Subcellular Distribution and Apoptotic Profile in Human Oral Epithelium. ACS Applied Materials & Interfaces, 2014, 6, 6248-6256.	8.0	87
59	InÂvivo and exÂvivo proofs of concept that cetuximab conjugated vitamin E TPGS micelles increases efficacy of delivered docetaxel against triple negative breast cancer. Biomaterials, 2015, 63, 58-69.	11.4	82
60	Emerging 0D Transitionâ€Metal Dichalcogenides for Sensors, Biomedicine, and Clean Energy. Small, 2017, 13, 1700527.	10.0	81
61	Probing the relevance of 3D cancer models in nanomedicine research. Advanced Drug Delivery Reviews, 2014, 79-80, 95-106.	13.7	80
62	Oxidative stress by inorganic nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 414-438.	6.1	80
63	Absolute quantification of gene expression in biomaterials research using real-time PCR. Biomaterials, 2007, 28, 203-210.	11.4	74
64	Using Theater to Teach Clinical Empathy: A Pilot Study. Journal of General Internal Medicine, 2007, 22, 1114-1118.	2.6	74
65	Increasing the Potential Interacting Area of Nanomedicine Enhances Its Homotypic Cancer Targeting Efficacy. ACS Nano, 2020, 14, 3259-3271.	14.6	74
66	Electrochemical Quantification of <i>Escherichia coli</i> with DNA Nanostructure. Advanced Functional Materials, 2015, 25, 3840-3846.	14.9	72
67	Reducing ZnO nanoparticles toxicity through silica coating. Heliyon, 2016, 2, e00177.	3.2	71
68	Viability and adipogenic potential of human adipose tissue processed cell population obtained from pump-assisted and syringe-assisted liposuction. Journal of Dermatological Science, 2005, 37, 169-176.	1.9	70
69	Cytotoxic and genotoxic characterization of titanium dioxide, gadolinium oxide, and poly(lacticâ€ <i>co</i> â€glycolic acid) nanoparticles in human fibroblasts. Journal of Biomedical Materials Research - Part A, 2013, 101A, 633-640.	4.0	68
70	The reduction of anti-cancer drug antagonism by the spatial protection of drugs with PLA–TPGS nanoparticles. Biomaterials, 2014, 35, 3044-3051.	11.4	68
71	Nanotoxicology and nanomedicine: The Yin and Yang of nano-bio interactions for the new decade. Nano Today, 2021, 39, 101184.	11.9	67
72	Protecting microRNAs from RNase degradation with steric DNA nanostructures. Chemical Science, 2017. 8, 1062-1067.	7.4	65

#	Article	IF	CITATIONS
73	Intrinsic bioactivity of black phosphorus nanomaterials on mitotic centrosome destabilization through suppression of PLK1 kinase. Nature Nanotechnology, 2021, 16, 1150-1160.	31.5	62
74	Clinically Relevant Detection of <i>Streptococcus pneumoniae</i> with DNA-Antibody Nanostructures. Analytical Chemistry, 2017, 89, 6900-6906.	6.5	61
75	Self-assembly of stem cell membrane-camouflaged nanocomplex for microRNA-mediated repair of myocardial infarction injury. Biomaterials, 2020, 257, 120256.	11.4	60
76	Overcoming bacterial physical defenses with molecule-like ultrasmall antimicrobial gold nanoclusters. Bioactive Materials, 2021, 6, 941-950.	15.6	60
77	Engineered functionalized 2D nanoarchitectures for stimuli-responsive drug delivery. Materials Horizons, 2020, 7, 455-469.	12.2	57
78	Cancer-related ectopic expression of the bone-related transcription factor RUNX2 in non-osseous metastatic tumor cells is linked to cell proliferation and motility. Breast Cancer Research, 2010, 12, R89.	5.0	56
79	Ultrasensitive IgG quantification using DNA nano-pyramids. NPG Asia Materials, 2014, 6, e112-e112.	7.9	56
80	Direct laser machining-induced topographic pattern promotes up-regulation of myogenic markers in human mesenchymal stem cells. Acta Biomaterialia, 2012, 8, 531-539.	8.3	55
81	Storage of Gold Nanoclusters in Muscle Leads to their Biphasic in Vivo Clearance. Small, 2015, 11, 1683-1690.	10.0	55
82	Mesoporous Silica Nanoparticles as an Antitumoral-Angiogenesis Strategy. ACS Applied Materials & Interfaces, 2017, 9, 6690-6703.	8.0	55
83	Toxicity profiling of water contextual zinc oxide, silver, and titanium dioxide nanoparticles in human oral and gastrointestinal cell systems. Environmental Toxicology, 2015, 30, 1459-1469.	4.0	54
84	Phototherapy with layered materials derived quantum dots. Nanoscale, 2020, 12, 43-57.	5.6	54
85	Nanoâ€īiO ₂ Drives Epithelial–Mesenchymal Transition in Intestinal Epithelial Cancer Cells. Small, 2018, 14, e1800922.	10.0	53
86	Bioâ€inspired Micropatterned Platform to Steer Stem Cell Differentiation. Small, 2011, 7, 1416-1421.	10.0	52
87	Toxicity of Two-Dimensional Layered Materials and Their Heterostructures. Bioconjugate Chemistry, 2019, 30, 2287-2299.	3.6	49
88	Runx2, p53, and pRB status as diagnostic parameters for deregulation of osteoblast growth and differentiation in a new preâ€chemotherapeutic osteosarcoma cell line (OS1). Journal of Cellular Physiology, 2009, 221, 778-788.	4.1	47
89	Reality Check for Nanomaterialâ€Mediated Therapy with 3D Biomimetic Culture Systems. Advanced Functional Materials, 2016, 26, 4046-4065.	14.9	47
90	Biochemical Studies of the Lagunamides, Potent Cytotoxic Cyclic Depsipeptides from the Marine Cyanobacterium Lyngbya majuscula. Marine Drugs, 2012, 10, 1126-1137.	4.6	46

#	Article	IF	CITATIONS
91	Assembling Defined DNA Nanostructure with Nitrogenâ€Enriched Carbon Dots for Theranostic Cancer Applications. Small, 2020, 16, e1906975.	10.0	45
92	Positive association between nuclear Runx2 and oestrogen-progesterone receptor gene expression characterises a biological subtype of breast cancer. European Journal of Cancer, 2009, 45, 2239-2248.	2.8	44
93	Mechanoregulation of stem cell fate via micro-/nano-scale manipulation for regenerative medicine. Nanomedicine, 2013, 8, 623-638.	3.3	44
94	Cell Membrane Nanotherapeutics: From Synthesis to Applications Emerging Tools for Personalized Cancer Therapy. Advanced Therapeutics, 2020, 3, 1900201.	3.2	44
95	Insights into the Role of Focal Adhesion Modulation in Myogenic Differentiation of Human Mesenchymal Stem Cells. Stem Cells and Development, 2013, 22, 136-147.	2.1	42
96	Nanotoxicology of common metal oxide based nanomaterials: their ROSâ€y and nonâ€ROSâ€y consequences. Asia-Pacific Journal of Chemical Engineering, 2013, 8, 205-217.	1.5	41
97	A Bioâ€inspired Platform to Modulate Myogenic Differentiation of Human Mesenchymal Stem Cells Through Focal Adhesion Regulation. Advanced Healthcare Materials, 2013, 2, 442-449.	7.6	40
98	Inorganic Nanomaterials as Highly Efficient Inhibitors of Cellular Hepatic Fibrosis. ACS Applied Materials & Interfaces, 2018, 10, 31938-31946.	8.0	40
99	Observing antimicrobial process with traceable gold nanoclusters. Nano Research, 2021, 14, 1026-1033.	10.4	40
100	Osteo-maturation of adipose-derived stem cells required the combined action of vitamin D3, β-glycerophosphate, and ascorbic acid. Biochemical and Biophysical Research Communications, 2007, 362, 17-24.	2.1	39
101	Angiopoietin-1 accelerates restoration of endothelial cell barrier integrity from nanoparticle-induced leakiness. Nanotoxicology, 2019, 13, 682-700.	3.0	39
102	Site-Specific Conjugation of Monodispersed DOTA-PEGn to a Thiolated Diabody Reveals the Effect of Increasing PEG Size on Kidney Clearance and Tumor Uptake with Improved 64-Copper PET Imaging. Bioconjugate Chemistry, 2011, 22, 709-716.	3.6	38
103	Soft Material Approach to Induce Oxidative Stress in Mesenchymal Stem Cells for Functional Tissue Repair. ACS Applied Materials & Interfaces, 2016, 8, 26591-26599.	8.0	38
104	Ratiometric immunoassays built from synergistic photonic absorption of size-diverse semiconducting MoS2 nanostructures. Materials Horizons, 2019, 6, 563-570.	12.2	38
105	Bio-interactive nanoarchitectonics with two-dimensional materials and environments. Science and Technology of Advanced Materials, 2022, 23, 199-224.	6.1	37
106	Retooling Cancer Nanotherapeutics' Entry into Tumors to Alleviate Tumoral Hypoxia. Small, 2020, 16, e2003000.	10.0	36
107	Reciprocal Response of Human Oral Epithelial Cells to Internalized Silica Nanoparticles. Particle and Particle Systems Characterization, 2013, 30, 784-793.	2.3	34
108	Phage Based Green Chemistry for Gold Ion Reduction and Gold Retrieval. ACS Applied Materials & Interfaces, 2014, 6, 910-917.	8.0	34

7

#	Article	IF	CITATIONS
109	Characterization of Osteogenically Induced Adipose Tissue-Derived Precursor Cells in 2-Dimensional and 3-Dimensional Environments. Cells Tissues Organs, 2006, 182, 1-11.	2.3	33
110	The Osteogenic Differentiation of Adipose Tissue-Derived Precursor Cells in a 3D Scaffold/Matrix Environment. Current Drug Discovery Technologies, 2008, 5, 319-327.	1.2	33
111	Monodispersed DOTA-PEG–Conjugated Anti-TAG-72 Diabody Has Low Kidney Uptake and High Tumor-to-Blood Ratios Resulting in Improved 64Cu PET. Journal of Nuclear Medicine, 2010, 51, 1139-1146.	5.0	32
112	Anti-migratory and increased cytotoxic effects of novel dual drug-loaded complex hybrid micelles in triple negative breast cancer cells. Nano Research, 2015, 8, 2533-2547.	10.4	31
113	Sphingosine-1-Phosphate Mediates Proliferation Maintaining the Multipotency of Human Adult Bone Marrow and Adipose Tissue-derived Stem Cells. Journal of Molecular Cell Biology, 2010, 2, 199-208.	3.3	29
114	Decoupling the Direct and Indirect Biological Effects of ZnO Nanoparticles Using a Communicative Dual Cellâ€Type Tissue Construct. Small, 2016, 12, 647-657.	10.0	27
115	From mouse to mouseâ€ear cress: Nanomaterials as vehicles in plant biotechnology. Exploration, 2021, 1, 9-20.	11.0	27
116	Investigating the effects of preinduction on human adipose-derived precursor cells in an athymic rat model. Differentiation, 2006, 74, 519-529.	1.9	26
117	Sulfur Defect-Engineered Biodegradable Cobalt Sulfide Quantum Dot-Driven Photothermal and Chemodynamic Anticancer Therapy. ACS Applied Materials & Interfaces, 2022, 14, 25183-25196.	8.0	25
118	Inducible endothelial leakiness in nanotherapeutic applications. Biomaterials, 2022, 287, 121640.	11.4	25
119	Dynamic Protein Corona of Gold Nanoparticles with an Evolving Morphology. ACS Applied Materials & Interfaces, 2021, 13, 58238-58251.	8.0	23
120	Defectâ€Rich Molybdenum Sulfide Quantum Dots for Amplified Photoluminescence and Photonicsâ€Đriven Reactive Oxygen Species Generation. Advanced Materials, 2022, 34, .	21.0	23
121	Cell–Microsphere Constructs Formed with Human Adiposeâ€Derived Stem Cells and Gelatin Microspheres Promotes Stemness, Differentiation, and Controlled Proâ€Angiogenic Potential. Macromolecular Bioscience, 2014, 14, 1458-1468.	4.1	22
122	Cytotoxic Effects of Phosphonate-Functionalized Mesoporous Silica Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 2416-2422.	8.0	22
123	Ultrasmall Molybdenum Disulfide Quantum Dots Cage Alzheimer's Amyloid Beta to Restore Membrane Fluidity. ACS Applied Materials & Interfaces, 2021, 13, 29936-29948.	8.0	22
124	A Framework of Paracellular Transport via Nanoparticlesâ€Induced Endothelial Leakiness. Advanced Science, 2021, 8, e2102519.	11.2	22
125	ATF5, a possible regulator of osteogenic differentiation in human adiposeâ€derived stem cells. Journal of Cellular Biochemistry, 2012, 113, 2744-2753.	2.6	21
126	The gap between endothelial cells: key to the quick escape of nanomaterials?. Nanomedicine, 2014, 9, 1591-1594.	3.3	20

#	Article	IF	CITATIONS
127	Sugar-Grafted Cyclodextrin Nanocarrier as a "Trojan Horse―for Potentiating Antibiotic Activity. Pharmaceutical Research, 2016, 33, 1161-1174.	3.5	19
128	Oxygenic Enrichment in Hybrid Ruthenium Sulfide Nanoclusters for an Optimized Photothermal Effect. ACS Applied Materials & Interfaces, 2021, 13, 60351-60361.	8.0	19
129	Precise Singleâ€Step Electrophoretic Multiâ€Sized Fractionation of Liquidâ€Exfoliated Nanosheets. Advanced Functional Materials, 2018, 28, 1801622.	14.9	18
130	A Generic Micropatterning Platform to Direct Human Mesenchymal Stem Cells from Different Origins Towards Myogenic Differentiation. Macromolecular Bioscience, 2013, 13, 799-807.	4.1	17
131	Titanium Dioxide Nanoparticles Enhance Leakiness and Drug Permeability in Primary Human Hepatic Sinusoidal Endothelial Cells. International Journal of Molecular Sciences, 2019, 20, 35.	4.1	17
132	Nanoarchitektonik als ein Ansatz zur Erzeugung bioänlicher hierarchischer Organisate. Angewandte Chemie, 2020, 132, 15550-15574.	2.0	16
133	Brain Accumulation and Toxicity Profiles of Silica Nanoparticles: The Influence of Size and Exposure Route. Environmental Science & Technology, 2022, 56, 8319-8325.	10.0	16
134	PATHOLOGY REPORTING OF RESECTED COLORECTAL CANCERS IN NEW SOUTH WALES IN 2000. ANZ Journal of Surgery, 2007, 77, 963-969.	0.7	15
135	Exploiting cancer's antioxidative weakness through p53 with nanotoxicology. Nanomedicine, 2014, 9, 369-371.	3.3	15
136	Nanomedicine for the treatment of triple-negative breast cancer. Nanomedicine, 2014, 9, 561-564.	3.3	14
137	Rethinking Nanosafety: Harnessing Progress and Driving Innovation. Small, 2020, 16, e2002503.	10.0	14
138	Layered MoS2 defect-driven in situ synthesis of plasmonic gold nanocrystals visualizes the planar size and interfacial diversity. Nanoscale, 2020, 12, 11979-11985.	5.6	13
139	Molecular Design and Medicinal Applications of Nano-Nitric Oxide Delivery Systems. Current Medicinal Chemistry, 2018, 25, 1420-1432.	2.4	11
140	Macrophage Polarization as a Facile Strategy to Enhance Efficacy of Macrophage Membrane oated Nanoparticles in Osteoarthritis. Small Science, 2022, 2, .	9.9	11
141	Metal Nanoclusters: Engineering Functional Metal Materials at the Atomic Level (Adv. Mater. 47/2018). Advanced Materials, 2018, 30, 1870358.	21.0	10
142	Un/DoPack: Re-Clustering of Large System-on-Chip Designs with Interconnect Variation for Low-Cost FPGAs. IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, 2006, , .	0.0	9
143	Molecular Architecture Governs Cytotoxicity and Gene Transfection Efficacy of Polyethylenimine Based Nanoplexes in Mammalian Cell Lines. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 301-311.	3.7	9
144	Functionalizing DNA nanostructures with natural cationic amino acids. Bioactive Materials, 2021, 6, 2946-2955.	15.6	9

#	Article	IF	CITATIONS
145	Particulate matter from indoor environments of classroom induced higher cytotoxicity and leakiness in human microvascular endothelial cells in comparison with those collected from corridor. Indoor Air, 2017, 27, 551-563.	4.3	8
146	Novel therapeutic option for orbital atypical lymphoid hyperplasia. Clinical and Experimental Ophthalmology, 2010, 38, 892-894.	2.6	7
147	Intramuscular nerve damage in lacerated skeletal muscles may direct the inflammatory cytokine response during recovery. Journal of Cellular Biochemistry, 2012, 113, 2330-2345.	2.6	7
148	Coexpressing shRNA with fluorescence tags for quantification of cell migration studies. Molecular Biology Reports, 2012, 39, 7695-7703.	2.3	7
149	3-D DNA nanodevices for on-site sensitive detection of antibiotic residues in food. Chemical Communications, 2020, 56, 12628-12631.	4.1	7
150	Pathways to food from CO2 via â€~green chemical farming'. Nature Sustainability, 2022, 5, 907-909.	23.7	7
151	Understanding the implications of engineered nanoparticle induced autophagy in human epidermal keratinocytes in vitro. NanoImpact, 2019, 15, 100177.	4.5	6
152	Materialistic Interfaces with Nucleic Acids: Principles and Their Impact. Advanced Functional Materials, 2022, 32, .	14.9	6
153	Inorganic nanoparticles as tubulin binding agents for cancer therapy. Nanomedicine, 2014, 9, 2075-2077.	3.3	5
154	Replace: An incremental placement algorithm for field programmable gate arrays. , 2009, , .		4
155	Nanotoxicity: Mechanistic Investigation of the Biological Effects of SiO ₂ , TiO ₂ , and ZnO Nanoparticles on Intestinal Cells (Small 28/2015). Small, 2015, 11, 3390-3390.	10.0	4
156	Rethinking Nanosafety Part II: Leveraging Progress to Pioneer New Approaches and Solutions. Small, 2020, 16, e2004934.	10.0	4
157	Nanomedicine: Back to Basics: Exploiting the Innate Physicoâ€chemical Characteristics of Nanomaterials for Biomedical Applications (Adv. Funct. Mater. 38/2014). Advanced Functional Materials, 2014, 24, 5930-5930.	14.9	2
158	Nanotoxicity: Biomimicry 3D Gastrointestinal Spheroid Platform for the Assessment of Toxicity and Inflammatory Effects of Zinc Oxide Nanoparticles (Small 6/2015). Small, 2015, 11, 760-760.	10.0	2
159	Protein-mediated DNA self-assembly by controlling the surface charge in a molecular crowding environment. Biomaterials Science, 2022, , .	5.4	2
160	Biosensors: Electrochemical Quantification of <i>Escherichia coli</i> with DNA Nanostructure (Adv.) Tj ETQq0 0	0 rgBT /Ov £4.9	verlock 10 Tf
161	Highlights from the latest articles in technical and technological advancements in nanotherapeutics. Nanomedicine, 2015, 10, 1047-1049.	3.3	1

¹⁶²Editorial: Nanomedicine's Multi-pronged Approach in Tackling Cancer. Current Medicinal Chemistry,
2018, 25, 1377-1378.2.41

#	Article	IF	CITATIONS
163	Isolating Bone Marrow Stem Cells Using Sieve Technology. Stem Cells, 2004, 22, 1123-1125.	3.2	0
164	Sphingosine-1-phosphate mediates proliferation maintaining the multipotency of human adult bone marrow and adipose tissue-derived stem cells. Journal of Molecular Cell Biology, 2011, 3, 382-382.	3.3	0
165	Peeling away the uncertainties of Zinc Oxide nanoparticles' toxicity mechanisms using tissue-like 3D spheroids. Toxicology Letters, 2015, 238, S199.	0.8	Ο
166	Surface functionalization of nanodiamonds can induce endothelial barrier leakiness. Toxicology Letters, 2016, 258, S263.	0.8	0
167	Clan Associations of Singapore and their Roles in the Small Business Sector. , 2007, , .		0