
Andreas von Leupoldt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1696055/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Interoception and Mental Health: A Roadmap. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2018, 3, 501-513.	1.1	524
2	The Unpleasantness of Perceived Dyspnea Is Processed in the Anterior Insula and Amygdala. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 1026-1032.	2.5	245
3	Dyspnea and pain share emotion-related brain network. NeuroImage, 2009, 48, 200-206.	2.1	225
4	Cortical Substrates for the Perception of Dyspnea. Chest, 2005, 128, 345-354.	0.4	139
5	The Impact of Anxiety and Depression on Outcomes of Pulmonary Rehabilitation in Patients With COPD. Chest, 2011, 140, 730-736.	0.4	132
6	Respiratory Changes in Response to Cognitive Load: A Systematic Review. Neural Plasticity, 2016, 2016, 1-16.	1.0	126
7	Psychological aspects in the perception of dyspnea in obstructive pulmonary diseases. Respiratory Medicine, 2007, 101, 411-422.	1.3	102
8	The impact of emotions on the sensory and affective dimension of perceived dyspnea. Psychophysiology, 2006, 43, 382-386.	1.2	95
9	Down-Regulation of Insular Cortex Responses to Dyspnea and Pain in Asthma. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 232-238.	2.5	93
10	Reduced Perception of Dyspnea and Pain after Right Insular Cortex Lesions. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 1173-1179.	2.5	79
11	Attention mechanisms during predictable and unpredictable threat — A steady-state visual evoked potential approach. NeuroImage, 2016, 139, 167-175.	2.1	62
12	Distractive Auditory Stimuli Reduce the Unpleasantness of Dyspnea During Exercise in Patients With COPD. Chest, 2007, 132, 1506-1512.	0.4	61
13	Psychosocial factors and behavioral medicine interventions in asthma Journal of Consulting and Clinical Psychology, 2013, 81, 231-250.	1.6	61
14	Structural Brain Changes in Patients WithÂCOPD. Chest, 2016, 149, 426-434.	0.4	59
15	The impact of anxiety on the neural processing of respiratory sensations. Neurolmage, 2011, 55, 247-252.	2.1	55
16	Films for eliciting emotional states in children. Behavior Research Methods, 2007, 39, 606-609.	2.3	49
17	The effect of anxiety on respiratory sensory gating measured by respiratory-related evoked potentials. Biological Psychology, 2012, 91, 185-189.	1.1	47
18	Brain Activation during Perception and Anticipation of Dyspnea in Chronic Obstructive Pulmonary Disease. Frontiers in Physiology, 2017, 8, 617.	1.3	46

#	Article	IF	CITATIONS
19	Respiratory muscle function and exercise limitation in patients with chronic obstructive pulmonary disease: a review. Expert Review of Respiratory Medicine, 2018, 12, 67-79.	1.0	46
20	The impact of emotions on the perception of dyspnea in pediatric asthma. Psychophysiology, 2006, 43, 641-644.	1.2	44
21	Verbal Descriptors of Dyspnea in Patients With COPD at Different Intensity Levels of Dyspnea. Chest, 2007, 132, 141-147.	0.4	43
22	Induction of dyspnea evokes increased anxiety and maladaptive breathing in individuals with high anxiety sensitivity and suffocation fear. Psychophysiology, 2013, 50, 488-497.	1.2	42
23	Emotions and Neural Processing of Respiratory Sensations Investigated With Respiratory-Related Evoked Potentials. Psychosomatic Medicine, 2013, 75, 244-252.	1.3	41
24	The psychology of chronic obstructive pulmonary disease. Current Opinion in Psychiatry, 2013, 26, 458-463.	3.1	41
25	The impact of affective states on the perception of dyspnea in patients with chronic obstructive pulmonary disease. Biological Psychology, 2010, 84, 129-134.	1.1	39
26	Brain Responses during the Anticipation of Dyspnea. Neural Plasticity, 2016, 2016, 1-10.	1.0	38
27	Behavioral Medicine Approaches to Chronic Obstructive Pulmonary Disease. Annals of Behavioral Medicine, 2012, 44, 52-65.	1.7	36
28	Effects of 3-week Outpatient Pulmonary Rehabilitation on Exercise Capacity, Dyspnea, and Quality of Life in COPD. Lung, 2008, 186, 387-391.	1.4	34
29	Interoception and symptom reporting: disentangling accuracy and bias. Frontiers in Psychology, 2015, 06, 732.	1.1	34
30	Observing dyspnoea in others elicits dyspnoea, negative affect and brain responses. European Respiratory Journal, 2018, 51, 1702682.	3.1	32
31	Structural Brain Changes Related to Disease Duration in Patients with Asthma. PLoS ONE, 2011, 6, e23739.	1.1	32
32	Individual differences in cardiorespiratory measures of mental workload: An investigation of negative affectivity and cognitive avoidant coping in pilot candidates. Applied Ergonomics, 2017, 59, 274-282.	1.7	31
33	Reduced neural gating of respiratory sensations is associated with increased dyspnoea perception. European Respiratory Journal, 2018, 52, 1800559.	3.1	31
34	Dyspnea catastrophizing and neural activations during the anticipation and perception of dyspnea. Psychophysiology, 2018, 55, e13004.	1.2	29
35	The role of respiratory measures to assess mental load in pilot selection. Ergonomics, 2016, 59, 745-753.	1.1	28
36	Negative emotional stimulation decreases respiratory sensory gating in healthy humans. Respiratory Physiology and Neurobiology, 2014, 204, 50-57.	0.7	27

#	Article	IF	CITATIONS
37	The impact of disease-specific fears on outcome measures of pulmonary rehabilitation in patients with COPD. Respiratory Medicine, 2019, 146, 87-95.	1.3	26
38	Could targeting disease specific fear and anxiety improve COPD outcomes?. Expert Review of Respiratory Medicine, 2016, 10, 835-837.	1.0	25
39	Geriatric dyspnea: Doing worse, feeling better. Ageing Research Reviews, 2014, 15, 94-99.	5.0	22
40	Brain mechanisms of short-term habituation and sensitization toward dyspnea. Frontiers in Psychology, 2015, 6, 748.	1.1	22
41	Effects of transcutaneous auricular vagus nerve stimulation on reversal learning, tonic pupil size, salivary alphaâ€amylase, and cortisol. Psychophysiology, 2021, 58, e13885.	1.2	20
42	The impact of dyspnea and threat of dyspnea on error processing. Psychophysiology, 2019, 56, e13278.	1.2	19
43	The impact of emotions on symptom perception in patients with asthma and healthy controls. Psychophysiology, 2013, 50, 1-4.	1.2	18
44	Respiratory perception measured by cortical neural activations in individuals with generalized anxiety disorder. Respiratory Physiology and Neurobiology, 2014, 204, 36-40.	0.7	17
45	Treating anxious expectations can improve dyspnoea in patients with COPD. European Respiratory Journal, 2017, 50, 1701352.	3.1	17
46	The presence of others reduces dyspnea and cortical neural processing of respiratory sensations. Biological Psychology, 2019, 140, 48-54.	1.1	17
47	Respiratory sensory gating measured by respiratory-related evoked potentials in generalized anxiety disorder. Frontiers in Psychology, 2015, 6, 957.	1.1	16
48	The Impact of Loneliness on Outcomes of Pulmonary Rehabilitation in Patients with COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2018, 15, 446-453.	0.7	16
49	Being Anxious, Thinking Positively: The Effect of Emotional Context on Respiratory Sensory Gating. Frontiers in Physiology, 2016, 7, 19.	1.3	15
50	Neural responses to affective pictures while anticipating and perceiving respiratory threat. Psychophysiology, 2017, 54, 182-192.	1.2	15
51	The impairing effect of dyspnea on response inhibition. International Journal of Psychophysiology, 2018, 133, 41-49.	0.5	15
52	Impact of Disease-Specific Fears on Pulmonary Rehabilitation Trajectories in Patients with COPD. Journal of Clinical Medicine, 2019, 8, 1460.	1.0	15
53	The Impact of Unpredictability on Dyspnea Perception, Anxiety and Interoceptive Error Processing. Frontiers in Physiology, 2019, 10, 535.	1.3	15
54	Intrinsic functional brain connectivity patterns underlying enhanced interoceptive sensibility. Journal of Affective Disorders, 2020, 276, 804-814.	2.0	15

#	Article	IF	CITATIONS
55	Brain Activations to Dyspnea in Patients With COPD. Frontiers in Physiology, 2020, 11, 7.	1.3	15
56	Neural Processing of Respiratory Sensations when Breathing Becomes More Difficult and Unpleasant. Frontiers in Physiology, 2010, 1, 144.	1.3	14
57	Amygdala response to anticipation of dyspnea is modulated by 5â€HTT <i>LPR</i> genotype. Psychophysiology, 2015, 52, 973-976.	1.2	14
58	Affective traits, states, and breathlessness. Current Opinion in Supportive and Palliative Care, 2020, 14, 182-189.	0.5	14
59	The breathing brain: The potential of neural oscillations for the understanding of respiratory perception in health and disease. Psychophysiology, 2022, 59, e13844.	1.2	14
60	Investigating the effect of respiratory bodily threat on the processing of emotional pictures. Respiratory Physiology and Neurobiology, 2014, 204, 41-49.	0.7	13
61	A highly cognitive demanding working memory task may prevent the development of nociceptive hypersensitivity. Pain, 2020, 161, 1459-1469.	2.0	13
62	No evidence for a modulating effect of continuous transcutaneous auricular vagus nerve stimulation on markers of noradrenergic activity. Psychophysiology, 2022, 59, e13984.	1.2	13
63	Interoception and the uneasiness of the mind: affect as perceptual style. Frontiers in Psychology, 2015, 6, 1408.	1.1	12
64	The error-related negativity for error processing in interoception. NeuroImage, 2019, 184, 386-395.	2.1	11
65	The effect of anxiety on brain activation patterns in response to inspiratory occlusions: an fMRI study. Scientific Reports, 2019, 9, 15045.	1.6	10
66	The Effects of Repeated Dyspnea Exposure on Response Inhibition. Frontiers in Physiology, 2019, 10, 663.	1.3	10
67	Crossâ€modal relationships of neural gating with the subjective perception of respiratory and somatosensory sensations. Psychophysiology, 2021, 58, e13710.	1.2	10
68	The influence of corticosteroids on the perception of dyspnea in asthma. Respiratory Medicine, 2007, 101, 1079-1087.	1.3	9
69	Prenatal stress exposure is associated with increased dyspnoea perception in adulthood. European Respiratory Journal, 2017, 50, 1700642.	3.1	9
70	Breathlessness amplifies amygdala responses during affective processing. Psychophysiology, 2018, 55, e13092.	1.2	9
71	Looking While Unhappy: A Mood-Congruent Attention Bias Toward Sad Adult Faces in Children. Frontiers in Psychology, 2018, 9, 2577.	1.1	9
72	The effect of dyspnea on recognition memory. International Journal of Psychophysiology, 2020, 148, 50-58.	0.5	8

#	Article	IF	CITATIONS
73	Experimental social rejection increases dyspnoea perception and neural processing of respiratory sensations in healthy subjects. European Respiratory Journal, 2019, 53, 1801409.	3.1	7
74	The test-retest reliability of the respiratory-related evoked potential. Biological Psychology, 2021, 163, 108133.	1.1	7
75	A role for GABA in the modulation of striatal and hippocampal systems under stress. Communications Biology, 2021, 4, 1033.	2.0	7
76	The Effect of Development in Respiratory Sensory Gating Measured by Electrocortical Activations. Neural Plasticity, 2015, 2015, 1-7.	1.0	5
77	The load of dyspnoea on brain and legs. European Respiratory Journal, 2020, 56, 2001096.	3.1	5
78	The effects of unpredictability and negative affect on perception and neural gating in different interoceptive modalities. Biological Psychology, 2022, 169, 108267.	1.1	5
79	Error-related negativity relates to the neural processing of brief aversive bodily sensations. Biological Psychology, 2020, 152, 107872.	1.1	4
80	ls it a painful error? The effect of unpredictability and intensity of punishment on the error-related negativity, and somatosensory evoked potentials. Biological Psychology, 2021, 165, 108177.	1.1	4
81	Trial and Error (-Related Negativity):An Odyssey of Integrating Different Experimental Paradigms. Journal of Trial and Error, 2020, 1, 27-38.	0.2	4
82	Looking at Allergens Increases Symptom Report in Patients with Allergic Asthma. Journal of Asthma, 2012, 49, 1027-1029.	0.9	3
83	Validity of a Self-administered Questionnaire Version of the Transition Dyspnea Index in Patients with COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2017, 14, 66-71.	0.7	3
84	Worries and concerns of inflammatory bowel disease (IBD) patients in Belgium – a validation of the Dutch rating form. Scandinavian Journal of Gastroenterology, 2020, 55, 1427-1432.	0.6	3
85	The impact of unpredictability of dyspnea offset on dyspnea perception, fear, and respiratory neural gating. Psychophysiology, 2021, 58, e13807.	1.2	3
86	Pain by mistake. Pain, 2021, Publish Ahead of Print, .	2.0	2
87	Inflammatory Bowel Disease-related Behaviours [IBD-Bx] Questionnaire: Development, Validation and Prospective Associations with Fatigue. Journal of Crohn's and Colitis, 2022, 16, 581-590.	0.6	2
88	Learn to breathe, breathe to learn? No evidence for effects of slow deep breathing at a 0.1â€ ⁻ Hz frequency on reversal learning. International Journal of Psychophysiology, 2022, , .	0.5	2
89	ERS Scientific Working Group 09.04, "Psychologists and behavioural scientists― the next step towards multidisciplinary respiratory care. European Respiratory Journal, 2020, 56, 2001881.	3.1	1
90	To breathe or not to breathe: Interoceptive predictions in an anxious brain. Neuron, 2021, 109, 3904-3907.	3.8	1

#	Article	IF	CITATIONS
91	The effect of anxiety on respiratory sensory gating measured by the respiratory related evoked potential (RREP). FASEB Journal, 2011, 25, 1111.2.	0.2	0