Susanne Schiffmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/16957/publications.pdf

Version: 2024-02-01

63 papers 3,407 citations

212478 28 h-index 57 g-index

64 all docs

64
docs citations

64 times ranked 5414 citing authors

#	Article	IF	CITATIONS
1	Ibuprofen, Flurbiprofen, Etoricoxib or Paracetamol Do Not Influence ACE2 Expression and Activity In Vitro or in Mice and Do Not Exacerbate In-Vitro SARS-CoV-2 Infection. International Journal of Molecular Sciences, 2022, 23, 1049.	1.8	13
2	T-Cell-Specific CerS4 Depletion Prolonged Inflammation and Enhanced Tumor Burden in the AOM/DSS-Induced CAC Model. International Journal of Molecular Sciences, 2022, 23, 1866.	1.8	12
3	Rocaglates as Antivirals: Comparing the Effects on Viral Resistance, Anti-Coronaviral Activity, RNA-Clamping on eIF4A and Immune Cell Toxicity. Viruses, 2022, 14, 519.	1.5	4
4	Lecanoric acid mediates anti-proliferative effects by an M phase arrest in colon cancer cells. Biomedicine and Pharmacotherapy, 2022, 148, 112734.	2.5	11
5	Sodium Bituminosulfonate Used to Treat Rosacea Modulates Generation of Inflammatory Mediators by Primary Human Neutrophils. Journal of Inflammation Research, 2021, Volume 14, 2569-2582.	1.6	5
6	Xenocoumacin 2 reduces protein biosynthesis and inhibits inflammatory and angiogenesis-related processes in endothelial cells. Biomedicine and Pharmacotherapy, 2021, 140, 111765.	2.5	2
7	Characterization of ACE Inhibitors and AT1R Antagonists with Regard to Their Effect on ACE2 Expression and Infection with SARS-CoV-2 Using a Caco-2 Cell Model. Life, 2021, 11, 810.	1.1	9
8	The immunomodulatory potential of the arylmethylaminosteroid sc1o. Journal of Molecular Medicine, 2021, 99, 261-272.	1.7	2
9	From Cancer to Immune-Mediated Diseases and Tolerance Induction: Lessons Learned From Immune Oncology and Classical Anti-cancer Treatment. Frontiers in Immunology, 2020, 11, 1423.	2.2	5
10	Natural antiviral compound silvestrol modulates human monocyteâ€derived macrophages and dendritic cells. Journal of Cellular and Molecular Medicine, 2020, 24, 6988-6999.	1.6	17
11	In-vitro safety and off-target profile of the anti-parasitic arylmethylaminosteroid 1o. Scientific Reports, 2020, 10, 7534.	1.6	2
12	The Lipid Status in Patients with Ulcerative Colitis: Sphingolipids are Disease-Dependent Regulated. Journal of Clinical Medicine, 2019, 8, 971.	1.0	22
13	Promoter Activation in \hat{I} " hfq Mutants as an Efficient Tool for Specialized Metabolite Production Enabling Direct Bioactivity Testing. Angewandte Chemie, 2019, 131, 19133-19139.	1.6	16
14	Promoter Activation in \hat{i} 'i>hfq Mutants as an Efficient Tool for Specialized Metabolite Production Enabling Direct Bioactivity Testing. Angewandte Chemie - International Edition, 2019, 58, 18957-18963.	7.2	40
15	Immunogenicity assay development and validation for biological therapy as exemplified by ustekinumab. Clinical and Experimental Immunology, 2019, 196, 259-275.	1.1	10
16	Role of ceramide synthase 2 in G-CSF signaling and G-CSF-R translocation into detergent-resistant membranes. Scientific Reports, 2019, 9, 747.	1.6	1
17	Rücktitelbild: Promoter Activation in Δ <i>hfq</i> Mutants as an Efficient Tool for Specialized Metabolite Production Enabling Direct Bioactivity Testing (Angew. Chem. 52/2019). Angewandte Chemie, 2019, 131, 19288-19288.	1.6	O
18	Stimulating brain recovery after stroke using theranostic albumin nanocarriers loaded with nerve growth factor in combination therapy. Journal of Controlled Release, 2019, 293, 63-72.	4.8	31

#	Article	IF	CITATIONS
19	Ceramides as Novel Disease Biomarkers. Trends in Molecular Medicine, 2019, 25, 20-32.	3.5	140
20	Machine-learning based lipid mediator serum concentration patterns allow identification of multiple sclerosis patients with high accuracy. Scientific Reports, 2018, 8, 14884.	1.6	49
21	Dietary phytol reduces clinical symptoms in experimental autoimmune encephalomyelitis (EAE) at least partially by modulating NOX2 expression. Journal of Molecular Medicine, 2018, 96, 1131-1144.	1.7	6
22	The relevance of ceramides and their synthesizing enzymes for multiple sclerosis. Clinical Science, 2018, 132, 1963-1976.	1.8	32
23	Dysregulation of lysophosphatidic acids in multiple sclerosis and autoimmune encephalomyelitis. Acta Neuropathologica Communications, 2017, 5, 42.	2.4	45
24	Machine-Learned Data Structures of Lipid Marker Serum Concentrations in Multiple Sclerosis Patients Differ from Those in Healthy Subjects. International Journal of Molecular Sciences, 2017, 18, 1217.	1.8	22
25	Alphaâ€methylacylâ€CoA racemase deletion has mutually counteracting effects on Tâ€cell responses, associated with unchanged course of EAE. European Journal of Immunology, 2016, 46, 570-581.	1.6	7
26	The enigma of ceramide synthase regulation in mammalian cells. Progress in Lipid Research, 2016, 63, 93-119.	5.3	101
27	Induction of Experimental Autoimmune Encephalomyelitis in Mice and Evaluation of the Disease-dependent Distribution of Immune Cells in Various Tissues. Journal of Visualized Experiments, 2016, , .	0.2	24
28	Multiple rodent models and behavioral measures reveal unexpected responses to FTY720 and DMF in experimental autoimmune encephalomyelitis. Behavioural Brain Research, 2016, 300, 160-174.	1.2	35
29	Nanocarriers for photodynamic therapy—rational formulation design and medium-scale manufacture. International Journal of Pharmaceutics, 2015, 491, 250-260.	2.6	30
30	Lack of ceramide synthase 2 suppresses the development of experimental autoimmune encephalomyelitis by impairing the migratory capacity of neutrophils. Brain, Behavior, and Immunity, 2015, 46, 280-292.	2.0	53
31	Exacerbation of experimental autoimmune encephalomyelitis in ceramide synthase 6 knockout mice is associated with enhanced activation/migration of neutrophils. Immunology and Cell Biology, 2015, 93, 825-836.	1.0	43
32	Ceramide synthases CerS4 and CerS5 are upregulated by 17β-estradiol and GPER1 via AP-1 in human breast cancer cells. Biochemical Pharmacology, 2014, 92, 577-589.	2.0	37
33	Regulation of ceramide synthase 6 in a spontaneous experimental autoimmune encephalomyelitis model is sex dependent. Biochemical Pharmacology, 2014, 92, 326-335.	2.0	20
34	PGE2/EP4 signaling in peripheral immune cells promotes development of experimental autoimmune encephalomyelitis. Biochemical Pharmacology, 2014, 87, 625-635.	2.0	25
35	Nano-LC–MS/MS for the quantitation of ceramides in mice cerebrospinal fluid using minimal sample volume. Talanta, 2013, 116, 912-918.	2.9	14
36	The equilibrium between long and very long chain ceramides is important for the fate of the cell and can be influenced by co-expression of CerS. International Journal of Biochemistry and Cell Biology, 2013, 45, 1195-1203.	1,2	64

#	Article	IF	CITATIONS
37	Ceramide metabolism in mouse tissue. International Journal of Biochemistry and Cell Biology, 2013, 45, 1886-1894.	1.2	35
38	Ceramide Synthase 6 Plays a Critical Role in the Development of Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2012, 188, 5723-5733.	0.4	47
39	Chain length-specific properties of ceramides. Progress in Lipid Research, 2012, 51, 50-62.	5.3	402
40	Long chain ceramides and very long chain ceramides have opposite effects on human breast and colon cancer cell growth. International Journal of Biochemistry and Cell Biology, 2012, 44, 620-628.	1.2	178
41	Inhibitors of specific ceramide synthases. Biochimie, 2012, 94, 558-565.	1.3	44
42	Activation of ceramide synthase 6 by celecoxib leads to a selective induction of C16:0-ceramide. Biochemical Pharmacology, 2010, 80, 1632-1640.	2.0	58
43	The selective COX-2 inhibitor celecoxib modulates sphingolipid synthesis. Journal of Lipid Research, 2009, 50, 32-40.	2.0	63
44	Ceramide synthases and ceramide levels are increased in breast cancer tissue. Carcinogenesis, 2009, 30, 745-752.	1.3	186
45	Sphingosine kinase 2 deficient tumor xenografts show impaired growth and fail to polarize macrophages towards an antiâ€inflammatory phenotype. International Journal of Cancer, 2009, 125, 2114-2121.	2.3	94
46	Cellular membranes function as a storage compartment for celecoxib. Journal of Molecular Medicine, 2009, 87, 981-993.	1.7	23
47	Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer. Breast Cancer Research and Treatment, 2008, 112, 41-52.	1.1	280
48	Dimethylcelecoxib inhibits prostaglandin E2 production. Biochemical Pharmacology, 2008, 76, 62-69.	2.0	29
49	The anti-proliferative potency of celecoxib is not a class effect of coxibs. Biochemical Pharmacology, 2008, 76, 179-187.	2.0	54
50	p53 is important for the anti-proliferative effect of ibuprofen in colon carcinoma cells. Biochemical and Biophysical Research Communications, 2008, 365, 698-703.	1.0	21
51	Cyclooxygenase-2 (COX-2)–Independent Anticarcinogenic Effects of Selective COX-2 Inhibitors. Journal of the National Cancer Institute, 2006, 98, 736-747.	3.0	443
52	Evidence of COX-2 independent induction of apoptosis and cell cycle block in human colon carcinoma cells after S- or R-ibuprofen treatment. European Journal of Pharmacology, 2006, 540, 24-33.	1.7	44
53	Double-chip protein arrays: force-based multiplex sandwich immunoassays with increased specificity. Analytical and Bioanalytical Chemistry, 2004, 379, 974-81.	1.9	19
54	Double chip protein arrays using recombinant single-chain Fv antibody fragments. Proteomics, 2004, 4, 1417-1420.	1.3	14

#	Article	IF	CITATIONS
55	Metal sites in 3,4-dihydroxy-2-butanone 4-phosphate synthase fromMethanococcus jannaschiiin complex with the substrate ribulose 5-phosphate. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1338-1340.	2.5	13
56	DNA: A Programmable Force Sensor. Science, 2003, 301, 367-370.	6.0	167
57	A force-based protein biochip. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11356-11360.	3.3	59
58	Structure of 3,4-Dihydroxy-2-butanone 4-Phosphate Synthase from Methanococcus jannaschii in Complex with Divalent Metal Ions and the Substrate Ribulose 5-Phosphate. Journal of Biological Chemistry, 2003, 278, 42256-42265.	1.6	28
59	Biosynthesis of Riboflavin in Archaea Studies on the Mechanism of 3,4-Dihydroxy-2-butanone-4-phosphate Synthase of Methanococcus jannaschii. Journal of Biological Chemistry, 2002, 277, 41410-41416.	1.6	28
60	Folate synthesis in plants: The first step of the pterin branch is mediated by a unique bimodular GTP cyclohydrolase I. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12489-12494.	3.3	80
61	Crystal structure of rat GTP cyclohydrolase I feedback regulatory protein, GFRP11Edited by I. Wilson. Journal of Molecular Biology, 2001, 312, 1051-1057.	2.0	14
62	The NMR structure of the 47-kDa dimeric enzyme 3,4-dihydroxy-2-butanone-4-phosphate synthase and ligand binding studies reveal the location of the active site. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13025-13030.	3 . 3	33
63	Immunomodulation by antibiotics. , 0, , 351-370.		1