
Ryuichi Harada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1695623/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Monoamine oxidase B inhibitor, selegiline, reduces 18F-THK5351 uptake in the human brain. Alzheimer's Research and Therapy, 2017, 9, 25.	6.2	285
2	¹⁸ F-THK5351: A Novel PET Radiotracer for Imaging Neurofibrillary Pathology in Alzheimer Disease. Journal of Nuclear Medicine, 2016, 57, 208-214.	5.0	282
3	Novel ¹⁸ F-Labeled Arylquinoline Derivatives for Noninvasive Imaging of Tau Pathology in Alzheimer Disease. Journal of Nuclear Medicine, 2013, 54, 1420-1427.	5.0	259
4	Non-invasive assessment of Alzheimer's disease neurofibrillary pathology using 18F-THK5105 PET. Brain, 2014, 137, 1762-1771.	7.6	234
5	In vivo evaluation of a novel tau imaging tracer for Alzheimer's disease. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 816-826.	6.4	156
6	Tau PET Imaging in Alzheimer's Disease. Current Neurology and Neuroscience Reports, 2014, 14, 500.	4.2	141
7	Correlations of ¹⁸ F-THK5351 PET with Postmortem Burden of Tau and Astrogliosis in Alzheimer Disease. Journal of Nuclear Medicine, 2018, 59, 671-674.	5.0	135
8	The development and validation of tau PET tracers: current status and future directions. Clinical and Translational Imaging, 2018, 6, 305-316.	2.1	135
9	[18F]THK-5117 PET for assessing neurofibrillary pathology in Alzheimer's disease. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 1052-1061.	6.4	117
10	In vivo visualization of tau deposits in corticobasal syndrome by ¹⁸ F-THK5351 PET. Neurology, 2016, 87, 2309-2316.	1.1	105
11	Comparison of the binding characteristics of [18F]THK-523 and other amyloid imaging tracers to Alzheimer's disease pathology. European Journal of Nuclear Medicine and Molecular Imaging, 2013, 40, 125-132.	6.4	100
12	Characteristics of Tau and Its Ligands in PET Imaging. Biomolecules, 2016, 6, 7.	4.0	86
13	Dynamic PET Measures of Tau Accumulation in Cognitively Normal Older Adults and Alzheimer's Disease Patients Measured Using [18F] THK-5351. PLoS ONE, 2016, 11, e0158460.	2.5	85
14	The challenges of tau imaging. Future Neurology, 2012, 7, 409-421.	0.5	82
15	Longitudinal Assessment of Tau Pathology in Patients with Alzheimer's Disease Using [18F]THK-5117 Positron Emission Tomography. PLoS ONE, 2015, 10, e0140311.	2.5	75
16	Involvement of the Precuneus/Posterior Cingulate Cortex Is Significant for the Development of Alzheimer's Disease: A PET (THK5351, PiB) and Resting fMRI Study. Frontiers in Aging Neuroscience, 2018, 10, 304.	3.4	72
17	Assessing THK523 selectivity for tau deposits in Alzheimer's disease and non–Alzheimer's disease tauopathies. Alzheimer's Research and Therapy, 2014, 6, 11.	6.2	68
18	Advances in the development of tau PET radiotracers and their clinical applications. Ageing Research Reviews, 2016, 30, 107-113.	10.9	57

Ryuichi Harada

#	Article	IF	CITATIONS
19	¹⁸ F-SMBT-1: A Selective and Reversible PET Tracer for Monoamine Oxidase-B Imaging. Journal of Nuclear Medicine, 2021, 62, 253-258.	5.0	57
20	Structure–Activity Relationship of 2-Arylquinolines as PET Imaging Tracers for Tau Pathology in Alzheimer Disease. Journal of Nuclear Medicine, 2016, 57, 608-614.	5.0	56
21	Neuroimaging-pathological correlations of [18F]THK5351 PET in progressive supranuclear palsy. Acta Neuropathologica Communications, 2018, 6, 53.	5.2	54
22	Use of a Benzimidazole Derivative BF-188 in Fluorescence Multispectral Imaging for Selective Visualization of Tau Protein Fibrils in the Alzheimer's Disease Brain. Molecular Imaging and Biology, 2014, 16, 19-27.	2.6	42
23	Synthesis and preliminary evaluation of 2â€arylhydroxyquinoline derivatives for tau imaging. Journal of Labelled Compounds and Radiopharmaceuticals, 2014, 57, 18-24.	1.0	31
24	Imaging Protein Misfolding in the Brain Using β-Sheet Ligands. Frontiers in Neuroscience, 2018, 12, 585.	2.8	30
25	Preclinical Evaluation of [18F]THK-5105 Enantiomers: Effects of Chirality on Its Effectiveness as a Tau Imaging Radiotracer. Molecular Imaging and Biology, 2016, 18, 258-266.	2.6	29
26	Imaging of Reactive Astrogliosis by Positron Emission Tomography. Frontiers in Neuroscience, 2022, 16, 807435.	2.8	25
27	Characterization of the radiolabeled metabolite of tau PET tracer 18F-THK5351. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 2211-2218.	6.4	18
28	Characterization of the binding of tau imaging ligands to melanin-containing cells: putative off-target-binding site. Annals of Nuclear Medicine, 2019, 33, 375-382.	2.2	16
29	18F-THK5351 Positron Emission Tomography Imaging in Neurodegenerative Tauopathies. Frontiers in Aging Neuroscience, 2021, 13, 761010.	3.4	16
30	Site-Specific Labeling of F-18 Proteins Using a Supplemented Cell-Free Protein Synthesis System and O-2-[18F]Fluoroethyl-L-Tyrosine: [18F]FET-HER2 Affibody Molecule. Molecular Imaging and Biology, 2019, 21, 529-537.	2.6	13
31	Synthesis of [11C]interleukin 8 using a cell-free translation system and l-[11C]methionine. Nuclear Medicine and Biology, 2012, 39, 155-160.	0.6	8
32	Synthesis and Characterization of ¹⁸ F-Interleukin-8 Using a Cell-Free Translation System and 4- ¹⁸ F-Fluoro-I-Proline. Journal of Nuclear Medicine, 2016, 57, 634-639.	5.0	8
33	Synthesis and evaluation of 2-pyrrolopyridinylquinoline derivatives as selective tau PET tracers for the diagnosis of Alzheimer's disease. Nuclear Medicine and Biology, 2021, 93, 11-18.	0.6	7
34	A concentration-based microscale method for 18F-nucleophilic substitutions and its testing on the one-pot radiosynthesis of [18F]FET and [18F]fallypride. Applied Radiation and Isotopes, 2020, 166, 109361.	1.5	6
35	Synthesis and pharmacokinetic characterisation of a fluorine-18 labelled brain shuttle peptide fusion dimeric affibody. Scientific Reports, 2021, 11, 2588.	3.3	6
36	The Role of Chirality of [18F]SMBT-1 in Imaging of Monoamine Oxidase-B. ACS Chemical Neuroscience, 2022, 13, 322-329.	3.5	6

Ryuichi Harada

#	Article	IF	CITATIONS
37	O4-02-04: Validation of the binding specificity of Tau PET tracer [18 F]THK-5351 on postmortem human brain samples. , 2015, 11, P271-P271.		3
38	PET Imaging of Amyloid and Tau in Alzheimer's Disease. , 2022, , 307-323.		2
39	P1-010: BINDING CHARACTERIZATION OF TAU PET TRACER 18F-THK5117 IN NON-ALZHEIMER'S NEURODEGENERATIVE DISEASES. , 2014, 10, P307-P308.		1
40	IC-P-167: Validation of the binding specificity of Tau PET tracer [18 F]THK-5351 on postmortem human brain samples. , 2015, 11, P111-P111.		0
41	P4â€270: Identification of Wavelengthâ€Dependent Compounds for Imaging LEWY Pathology. Alzheimer's and Dementia, 2016, 12, P1136.	0.8	0
42	[ICâ€Pâ€182]: SUCCESSFUL REDUCTION OF OFFâ€TARGET BINDING OF QUINOLINE DERIVATIVES AS TAUâ€SELE PET TRACERS. Alzheimer's and Dementia, 2017, 13, P136.	ECTIVE	0
43	ICâ€Pâ€223: TO TAU OR TO MAOâ€B? MOST OF THE [Fâ€18]â€THK5351 SIGNAL IS BLOCKED BY SELEGILINE. Alz and Dementia, 2018, 14, P181.	zheimer's 0.8	0
44	Tau PET in Neurodegenerative Diseases Manifesting Dementia. , 2017, , 199-210.		0