Claudio Ciofi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1695134/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The era of reference genomes in conservation genomics. Trends in Ecology and Evolution, 2022, 37, 197-202.	8.7	138
2	Prey Preferences and Body Mass Most Influence Movement Behavior and Home Range Area of Komodo Dragons. Ichthyology and Herpetology, 2021, 109, .	0.8	2
3	Population structure, genomic diversity and demographic history of Komodo dragons inferred from wholeâ€genome sequencing. Molecular Ecology, 2021, 30, 6309-6324.	3.9	11
4	Human activities associated with reduced Komodo dragon habitat use and range loss on Flores. Biodiversity and Conservation, 2021, 30, 461-479.	2.6	9
5	Bridging the Gap between Vertebrate Cytogenetics and Genomics with Single-Chromosome Sequencing (ChromSeq). Genes, 2021, 12, 124.	2.4	13
6	Longâ€lasting effects of chronic exposure to chemical pollution on the hologenome of the Manila clam. Evolutionary Applications, 2021, 14, 2864-2880.	3.1	6
7	Mating frequency and colony genetic structure analyses reveal unexpected polygyny in the Mediterranean acrobat ant <i>Crematogaster scutellaris</i> . Ethology Ecology and Evolution, 2020, 32, 122-134.	1.4	2
8	Assessment of rodenticide resistance, eradication units, and pathogen prevalence in black rat populations from a Mediterranean biodiversity hotspot (Pontine Archipelago). Biological Invasions, 2020, 22, 1379-1395.	2.4	5
9	Identifying island safe havens to prevent the extinction of the World's largest lizard from global warming. Ecology and Evolution, 2020, 10, 10492-10507.	1.9	9
10	Insights into the Nesting Ecology and Annual Hatchling Production of the Komodo Dragon. Copeia, 2020, 108, .	1.3	1
11	Genome of the Komodo dragon reveals adaptations in the cardiovascular and chemosensory systems of monitor lizards. Nature Ecology and Evolution, 2019, 3, 1241-1252.	7.8	67
12	Hostâ€microbiota interactions shed light on mortality events in the striped venus clam <i>Chamelea gallina</i> . Molecular Ecology, 2019, 28, 4486-4499.	3.9	25
13	Assessment of seasonal variation of diet composition in rodents using DNA barcoding and Real-Time PCR. Scientific Reports, 2019, 9, 14124.	3.3	6
14	Conserved sex chromosomes and karyotype evolution in monitor lizards (Varanidae). Heredity, 2019, 123, 215-227.	2.6	48
15	Isolating Chromosomes of the Komodo Dragon: New Tools for Comparative Mapping and Sequence Assembly. Cytogenetic and Genome Research, 2019, 157, 123-131.	1.1	9
16	Insights into Emydid Turtle Cytogenetics: The European Pond Turtle as a Model Species. Cytogenetic and Genome Research, 2019, 157, 166-171.	1.1	4
17	Giant tortoise genomes provide insights into longevity and age-related disease. Nature Ecology and Evolution, 2019, 3, 87-95.	7.8	79
18	Genetic Pedigree Analysis of the Pilot Breeding Program for the Rediscovered Galapagos Giant Tortoise from Floreana Island. Journal of Heredity, 2018, 109, 620-630.	2.4	11

CLAUDIO CIOFI

#	Article	IF	CITATIONS
19	A comprehensive mitochondrial DNA mixed-stock analysis clarifies the composition of loggerhead turtle aggregates in the Adriatic Sea. Marine Biology, 2018, 165, 1.	1.5	15
20	Theory, practice, and conservation in the age of genomics: The Galápagos giant tortoise as a case study. Evolutionary Applications, 2018, 11, 1084-1093.	3.1	28
21	Exploring mechanisms and origins of reduced dispersal in island Komodo dragons. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181829.	2.6	18
22	Effects of human activities on Komodo dragons in Komodo National Park. Biodiversity and Conservation, 2018, 27, 3329-3347.	2.6	8
23	Relatedness within and between leks of golden-collared manakin differ between sexes and age classes. Behavioral Ecology, 2018, , .	2.2	0
24	Serpentine soils affect heavy metal tolerance but not genetic diversity in a common Mediterranean ant. Chemosphere, 2017, 180, 326-334.	8.2	7
25	A first estimate of sea turtle bycatch in the industrial trawling fishery of Gabon. Biodiversity and Conservation, 2017, 26, 2421-2433.	2.6	25
26	Identification of Genetically Important Individuals of the Rediscovered Floreana Galápagos Giant Tortoise (Chelonoidis elephantopus) Provides Founders for Species Restoration Program. Scientific Reports, 2017, 7, 11471.	3.3	27
27	Patterns of gene flow along linear habitats: population genetics of the European pond turtle (Emys) Tj ETQq1 1	0.784314 1.6	rgBT /Overloc
28	Abundance and genetic diversity responses of a lizard (Eulamprus heatwolei) to logging disturbance. Australian Journal of Zoology, 2017, 65, 362.	1.0	0
29	Ecological allometries and niche use dynamics across Komodo dragon ontogeny. Die Naturwissenschaften, 2016, 103, 27.	1.6	29
30	Temporal and spatial dynamics of insular Rusa deer and wild pig populations in Komodo National Park. Journal of Mammalogy, 2016, 97, 1652-1662.	1.3	16
31	Stable isotope analysis of trophic niche in two co-occurring native and invasive terrapins, Emys orbicularis and Trachemys scripta elegans. Biological Invasions, 2016, 18, 3611-3621.	2.4	29
32	The Rules of Aggression: How Genetic, Chemical and Spatial Factors Affect Intercolony Fights in a Dominant Species, the Mediterranean Acrobat Ant Crematogaster scutellaris. PLoS ONE, 2015, 10, e0137919.	2.5	36
33	Evaluating environmental, demographic and genetic effects on populationâ€level survival in an island endemic. Ecography, 2015, 38, 1060-1070.	4.5	19
34	Conservation of <scp>K</scp> omodo dragons <i><scp>V</scp>aranus komodoensis</i> in the <scp>W</scp> ae <scp>W</scp> uul nature reserve, <scp>F</scp> lores, <scp>I</scp> ndonesia: a multidisciplinary approach. International Zoo Yearbook, 2015, 49, 67-80.	0.9	17
35	Development of microsatellites for the genus Salamandrina: A tool to discriminate between northern and southern spectacled salamanders (Salamandrina perspicillata and Salamandrina terdigitata) and their hybrids. Biochemical Systematics and Ecology, 2015, 63, 170-173.	1.3	2
36	Population genetic structure of common bottlenose dolphins <i>(Tursiops truncatus)</i> in the Adriatic Sea and contiguous regions: implications for international conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 2015, 25, 212-222.	2.0	32

CLAUDIO CIOFI

#	Article	IF	CITATIONS
37	Demographic status of Komodo dragons populations in Komodo National Park. Biological Conservation, 2014, 171, 29-35.	4.1	33
38	Lineage fusion in <scp>G</scp> alápagos giant tortoises. Molecular Ecology, 2014, 23, 5276-5290.	3.9	59
39	Evaluation of three field monitoring-density estimation protocols and their relevance to Komodo dragon conservation. Biodiversity and Conservation, 2014, 23, 2473-2490.	2.6	23
40	Numerical dispersal simulations and genetics help explain the origin of hawksbill sea turtles in Ascension Island. Journal of Experimental Marine Biology and Ecology, 2014, 450, 98-108.	1.5	29
41	Invasive toxic prey may imperil the survival of an iconic giant lizard, the Komodo dragon Pacific Conservation Biology, 2014, 20, 363.	1.0	5
42	Detection of an East European wolf haplotype puzzles mitochondrial DNA monomorphism of the Italian wolf population. Mammalian Biology, 2013, 78, 374-378.	1.5	14
43	Application of molecular genetics and geometric morphometrics to taxonomy and conservation of cave beetles in central Italy. Journal of Insect Conservation, 2013, 17, 921-932.	1.4	11
44	Exploring the effects of seasonality and chemical pollution on the hepatopancreas transcriptome of the <scp>M</scp> anila clam. Molecular Ecology, 2013, 22, 2157-2172.	3.9	32
45	Can Camera Traps Monitor Komodo Dragons a Large Ectothermic Predator?. PLoS ONE, 2013, 8, e58800.	2.5	33
46	When the Rule Becomes the Exception. No Evidence of Gene Flow between Two Zerynthia Cryptic Butterflies Suggests the Emergence of a New Model Group. PLoS ONE, 2013, 8, e65746.	2.5	44
47	Characterization of nine microsatellite loci in the European polecat Mustela putorius. Conservation Genetics Resources, 2012, 4, 901-903.	0.8	2
48	Genetic rediscovery of an â€~extinct' Galápagos giant tortoise species. Current Biology, 2012, 22, R10-R11.	3.9	46
49	Life-History and Spatial Determinants of Somatic Growth Dynamics in Komodo Dragon Populations. PLoS ONE, 2012, 7, e45398.	2.5	39
50	Population Genetic Structure of Aldabra Giant Tortoises. Journal of Heredity, 2011, 102, 29-37.	2.4	12
51	Development of a multiplex PCR assay for fineâ€scale population genetic analysis of the Komodo monitor <i>Varanus komodoensis</i> based on 18 polymorphic microsatellite loci. Molecular Ecology Resources, 2011, 11, 550-556.	4.8	15
52	Transcriptome sequencing and microarray development for the Manila clam, Ruditapes philippinarum: genomic tools for environmental monitoring. BMC Genomics, 2011, 12, 234.	2.8	120
53	Characterization of 13 polymorphic microsatellite loci in the European pine marten Martes martes. Conservation Genetics Resources, 2010, 2, 397-399.	0.8	20
54	Assessment of environmental and host dependent factors correlated with tick abundance on Komodo dragons. Australian Zoologist, 2010, 35, 265-275.	1.1	3

CLAUDIO CIOFI

#	Article	IF	CITATIONS
55	Characterization of polymorphic microsatellite loci in the ant Crematogaster scutellaris. Conservation Genetics Resources, 2009, 1, 425-428.	0.8	6
56	Characterization of microsatellite loci in the European pond turtle <i>Emys orbicularis</i> . Molecular Ecology Resources, 2009, 9, 189-191.	4.8	12
57	Microsatellite analysis of genetic divergence among populations of giant Galápagos tortoises. Molecular Ecology, 2008, 11, 2265-2283.	3.9	88
58	Historical DNA analysis reveals living descendants of an extinct species of Galápagos tortoise. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15464-15469.	7.1	79
59	Preliminary Analysis of Home Range Structure in the Komodo Monitor, Varanus Komodoensis. Copeia, 2007, 2007, 462-470.	1.3	22
60	Island differences in population size structure and catch per unit effort and their conservation implications for Komodo dragons. Biological Conservation, 2007, 135, 247-255.	4.1	30
61	Maximum body size among insular Komodo dragon populations covaries with large prey density. Oikos, 2006, 112, 422-429.	2.7	76
62	Parthenogenesis in Komodo dragons. Nature, 2006, 444, 1021-1022.	27.8	176
63	Phylogeographic History and Gene Flow Among Giant GalaÌpagos Tortoises on Southern Isabela Island. Genetics, 2006, 172, 1727-1744.	2.9	40
64	Title is missing!. Conservation Genetics, 2003, 4, 31-46.	1.5	75
65	The origin of captive Galápagos tortoises based on DNA analysis: implications for the management of natural populations. Animal Conservation, 2003, 6, 329-337.	2.9	28
66	Are the native giant tortoises from the Seychelles really extinct? A genetic perspective based on mtDNA and microsatellite data. Molecular Ecology, 2003, 12, 1403-1413.	3.9	28
67	Genes Record a Prehistoric Volcano Eruption in the Galapagos. Science, 2003, 302, 75-75.	12.6	69
68	Genetics and conservation on islands: the Gala $ ilde{A}_i$ pagos giant tortoise as a case study. , 2001, , 269-293.		5
69	Genetic divergence and units for conservation in the Komodo dragon Varanus komodoensis. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 2269-2274.	2.6	177
70	Genetic structure and gene flow among Komodo dragon populations inferredby microsatellite loci analysis. Molecular Ecology, 1999, 8, S17-S30.	3.9	65
71	The Komodo Dragon. Scientific American, 1999, 280, 84-91.	1.0	42
72	Environmental sex determination in reptiles. Applied Animal Behaviour Science, 1997, 51, 251-265.	1.9	46

#	Article	IF	CITATIONS
73	Analysis of Homing Pattern in the Colubrid Snake Coluber viridiflavus. Journal of Herpetology, 1994, 28, 477.	0.5	18