
Minsoo Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1694654/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The HOIL-1L ligase modulates immune signalling and cell death via monoubiquitination of LUBAC. Nature Cell Biology, 2020, 22, 663-673.	10.3	63
2	Moyamoya disease patient mutations in the RING domain of RNF213 reduce its ubiquitin ligase activity and enhance NFκB activation and apoptosis in an AAA+ domain-dependent manner. Biochemical and Biophysical Research Communications, 2020, 525, 668-674.	2.1	31
3	Microglia-Triggered Plasticity of Intrinsic Excitability Modulates Psychomotor Behaviors in Acute Cerebellar Inflammation. Cell Reports, 2019, 28, 2923-2938.e8.	6.4	78
4	Manipulation of host ubiquitin-proteasome system by bacterial pathogens. Journal of the Society of Japanese Women Scientists, 2017, 17, 8-18.	0.0	0
5	Midoriâ€ishi Cyan/monomeric Kusabiraâ€Orangeâ€based fluorescence resonance energy transfer assay for characterization of various E3 ligases. Genes To Cells, 2016, 21, 608-623.	1.2	6
6	Crystal structure of the substrate-recognition domain of the <i>Shigella</i> E3 ligase IpaH9.8. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 269-275.	0.8	12
7	Bacterial Effectors and Their Functions in the Ubiquitin-Proteasome System: Insight from the Modes of Substrate Recognition. Cells, 2014, 3, 848-864.	4.1	30
8	Manipulation of the host cell death pathway by <i>Shigella</i> . Cellular Microbiology, 2014, 16, 1757-1766.	2.1	32
9	Exploitation of the host ubiquitin system by human bacterial pathogens. Nature Reviews Microbiology, 2014, 12, 399-413.	28.6	113
10	<i>Shigella</i> IpaH7.8 E3 ubiquitin ligase targets glomulin and activates inflammasomes to demolish macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4254-63.	7.1	87
11	Epigenetic silencing of miR-210 increases the proliferation of gastric epithelium during chronic Helicobacter pylori infection. Nature Communications, 2014, 5, 4497.	12.8	116
12	Structural Basis for the Recognition of Ubc13 by the Shigella flexneri Effector Ospl. Journal of Molecular Biology, 2013, 425, 2623-2631.	4.2	27
13	The Shigella OspC3 Effector Inhibits Caspase-4, Antagonizes Inflammatory Cell Death, and Promotes Epithelial Infection. Cell Host and Microbe, 2013, 13, 570-583.	11.0	168
14	p130Cas-dependent actin remodelling regulates myogenic differentiation. Biochemical Journal, 2012, 445, 323-332.	3.7	24
15	Uptake of Shigella-containing pseudopodia by neighboring epithelial cells at tricellular junctions via non-canonical clathrin-dependent trafficking pathway. Virulence, 2012, 3, 515-517.	4.4	4
16	Structural flexibility regulates phosphopeptide-binding activity of the tyrosine kinase binding domain of Cbl-c. Journal of Biochemistry, 2012, 152, 487-495.	1.7	9
17	A bacterial effector targets the TRAF6-NFήB pathway to modulate the acute inflammatory response to bacterial invasion of epithelial cells. Virulence, 2012, 3, 518-520.	4.4	1
18	Shigella Targets Epithelial Tricellular Junctions and Uses a Noncanonical Clathrin-Dependent Endocytic Pathway to Spread Between Cells. Cell Host and Microbe, 2012, 11, 325-336.	11.0	90

Мілѕоо Кім

#	Article	IF	CITATIONS
19	Bacteria and host interactions in the gut epithelial barrier. Nature Chemical Biology, 2012, 8, 36-45.	8.0	267
20	The Shigella flexneri effector OspI deamidates UBC13 to dampen the inflammatory response. Nature, 2012, 483, 623-626.	27.8	153
21	Monoubiquitination of Tob/BTG family proteins competes with degradation-targeting polyubiquitination. Biochemical and Biophysical Research Communications, 2011, 409, 70-74.	2.1	3
22	Shigella deploy multiple countermeasures against host innate immune responses. Current Opinion in Microbiology, 2011, 14, 16-23.	5.1	49
23	Cell death and infection: A double-edged sword for host and pathogen survival. Journal of Cell Biology, 2011, 195, 931-942.	5.2	297
24	Coronin7 forms a novel E3 ubiquitin ligase complex to promote the degradation of the anti-proliferative protein Tob. FEBS Letters, 2011, 585, 65-70.	2.8	2
25	Cell death and infection: A double-edged sword for host and pathogen survival. Journal of Experimental Medicine, 2011, 208, i37-i37.	8.5	1
26	A bacterial E3 ubiquitin ligase IpaH9.8 targets NEMO/IKKÎ ³ to dampen the host NF-κB-mediated inflammatory response. Nature Cell Biology, 2010, 12, 66-73.	10.3	225
27	Reinforcement of epithelial cell adhesion to basement membrane by a bacterial pathogen as a new infectious stratagem. Virulence, 2010, 1, 52-55.	4.4	15
28	The bacterial effector Cif interferes with SCF ubiquitin ligase function by inhibiting deneddylation of Cullin1. Biochemical and Biophysical Research Communications, 2010, 401, 268-274.	2.1	42
29	Bacterial Interactions with the Host Epithelium. Cell Host and Microbe, 2010, 8, 20-35.	11.0	187
30	Bacteria hijack integrin-linked kinase to stabilize focal adhesions and block cell detachment. Nature, 2009, 459, 578-582.	27.8	160
31	Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nature Cell Biology, 2009, 11, 1233-1240.	10.3	388
32	A new ubiquitin ligase involved in p57 ^{KIP2} proteolysis regulates osteoblast cell differentiation. EMBO Reports, 2008, 9, 878-884.	4.5	34
33	A Bacterial Effector Targets Mad2L2, an APC Inhibitor, to Modulate Host Cell Cycling. Cell, 2007, 130, 611-623.	28.9	141
34	Cbl-c suppresses v-Src-induced transformation through ubiquitin-dependent protein degradation. Oncogene, 2004, 23, 1645-1655.	5.9	57
35	Molecular cloning and characterization of a novel cbl-family gene, cbl-c. Gene, 1999, 239, 145-154.	2.2	60