
## Andreas Ludwig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1694477/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The collectrinâ€like part of the <scp>SARSâ€CoVâ€1 and â€2</scp> receptor <scp>ACE2</scp> is shed by the metalloproteinases <scp>ADAM10</scp> and <scp>ADAM17</scp> . FASEB Journal, 2022, 36, e22234.                  | 0.5 | 12        |
| 2  | Robo4 is constitutively shed by ADAMs from endothelial cells and the shed Robo4 functions to inhibit Slit3-induced angiogenesis. Scientific Reports, 2022, 12, 4352.                                                    | 3.3 | 4         |
| 3  | Mechanic Forces Promote Brain Endothelial Activation by SARS-CoV-2 Spike Protein. Stroke, 2021, 52, 271-273.                                                                                                            | 2.0 | 0         |
| 4  | Expression levels of the metalloproteinase ADAM8 critically regulate proliferation, migration and<br>malignant signalling events in hepatoma cells. Journal of Cellular and Molecular Medicine, 2021, 25,<br>1982-1999. | 3.6 | 9         |
| 5  | Inflammatory Responses of Astrocytes Are Independent from Lipocalin 2. Journal of Molecular<br>Neuroscience, 2021, 71, 933-942.                                                                                         | 2.3 | 7         |
| 6  | Expression of the Metalloproteinase ADAM8 Is Upregulated in Liver Inflammation Models and Enhances Cytokine Release In Vitro. Mediators of Inflammation, 2021, 2021, 1-15.                                              | 3.0 | 5         |
| 7  | Key metalloproteinase-mediated pathways in the kidney. Nature Reviews Nephrology, 2021, 17, 513-527.                                                                                                                    | 9.6 | 46        |
| 8  | Reconstruction of Ultraâ€ŧhin Alveolar apillary Basement Membrane Mimics. Advanced Biology, 2021, 5,<br>e2000427.                                                                                                       | 2.5 | 9         |
| 9  | The iRhom homology domain is indispensable for ADAM17-mediated TNFα and EGF receptor ligand release. Cellular and Molecular Life Sciences, 2021, 78, 5015-5040.                                                         | 5.4 | 8         |
| 10 | Posttranslational modifications by ADAM10 shape myeloid antigen-presenting cell homeostasis in the splenic marginal zone. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . | 7.1 | 7         |
| 11 | The metalloproteinase ADAM10 requires its activity to sustain surface expression. Cellular and Molecular Life Sciences, 2021, 78, 715-732.                                                                              | 5.4 | 17        |
| 12 | Inflammatory activation of surface molecule shedding by upregulation of the pseudoprotease iRhom2 in colon epithelial cells. Scientific Reports, 2021, 11, 24230.                                                       | 3.3 | 8         |
| 13 | The iRhom2/ADAM17 Axis Attenuates Bacterial Uptake by Phagocytes in a Cell Autonomous Manner.<br>International Journal of Molecular Sciences, 2020, 21, 5978.                                                           | 4.1 | 9         |
| 14 | Differential Induction of the ADAM17 Regulators iRhom1 and 2 in Endothelial Cells. Frontiers in Cardiovascular Medicine, 2020, 7, 610344.                                                                               | 2.4 | 16        |
| 15 | Impairment of carbonic anhydrase IX ectodomain cleavage reinforces tumorigenic and metastatic phenotype of cancer cells. British Journal of Cancer, 2020, 122, 1590-1603.                                               | 6.4 | 11        |
| 16 | The metalloproteinase ADAM15 is upregulated by shear stress and promotes survival of endothelial cells. Journal of Molecular and Cellular Cardiology, 2019, 134, 51-61.                                                 | 1.9 | 24        |
| 17 | Status update on iRhom and ADAM17: It's still complicated. Biochimica Et Biophysica Acta - Molecular<br>Cell Research, 2019, 1866, 1567-1583.                                                                           | 4.1 | 39        |
| 18 | Metalloproteinases TACE and MMP-9 Differentially Regulate Death Factors on Adult and Neonatal<br>Monocytes After Infection with Escherichia coli. International Journal of Molecular Sciences, 2019,<br>20, 1399.       | 4.1 | 9         |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Elevated expression of the metalloproteinase ADAM8 associates with vascular diseases in mice and humans. Atherosclerosis, 2019, 286, 163-171.                                                                              | 0.8 | 15        |
| 20 | Retrograde perfusion in isolated perfused mouse lungs—Feasibility and effects on cytokine levels and pulmonary oedema formation. Basic and Clinical Pharmacology and Toxicology, 2019, 125, 279-288.                       | 2.5 | 3         |
| 21 | Amphiregulin Regulates Phagocytosis-Induced Cell Death in Monocytes via EGFR and the Bcl-2 Protein<br>Family. Mediators of Inflammation, 2019, 2019, 1-13.                                                                 | 3.0 | 7         |
| 22 | ADAM10 mediates malignant pleural mesothelioma invasiveness. Oncogene, 2019, 38, 3521-3534.                                                                                                                                | 5.9 | 19        |
| 23 | ADAM8 expression in breast cancer derived brain metastases: Functional implications on MMPâ€9<br>expression and transendothelial migration in breast cancer cells. International Journal of Cancer,<br>2018, 142, 779-791. | 5.1 | 42        |
| 24 | Novel role of APP cleavage by ADAM10 for breast cancer metastasis. EBioMedicine, 2018, 38, 5-6.                                                                                                                            | 6.1 | 8         |
| 25 | ADAM10 membrane-bound protease mediates malignant pleural mesothelioma invasiveness. , 2018, , .                                                                                                                           |     | Ο         |
| 26 | Protean proteases: at the cutting edgeÂofÂlung diseases. European Respiratory Journal, 2017, 49, 1501200.                                                                                                                  | 6.7 | 49        |
| 27 | The metalloproteinase ADAM8 promotes leukocyte recruitment in vitro and in acute lung<br>inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313,<br>L602-L614.                   | 2.9 | 25        |
| 28 | Whole body and hematopoietic ADAM8 deficiency does not influence advanced atherosclerotic lesion development, despite its association with human plaque progression. Scientific Reports, 2017, 7, 11670.                   | 3.3 | 13        |
| 29 | Considerations on inhibition approaches for proinflammatory functions of ADAM proteases.<br>Platelets, 2017, 28, 354-361.                                                                                                  | 2.3 | 22        |
| 30 | Fine Tuning Cell Migration by a Disintegrin and Metalloproteinases. Mediators of Inflammation, 2017, 2017, 1-22.                                                                                                           | 3.0 | 21        |
| 31 | Shear Stress Counteracts Endothelial CX3CL1 Induction and Monocytic Cell Adhesion. Mediators of Inflammation, 2017, 2017, 1-10.                                                                                            | 3.0 | 21        |
| 32 | The DRF motif of CXCR6 as chemokine receptor adaptation to adhesion. PLoS ONE, 2017, 12, e0173486.                                                                                                                         | 2.5 | 23        |
| 33 | Abstract 93: Endothelial A Disintegrin and Metalloprotease 10 Deficiency Enhances Murine<br>Atherosclerosis Development. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, .                                   | 2.4 | 0         |
| 34 | Discovery of an enzyme and substrate selective inhibitor of ADAM10 using an exosite-binding glycosylated substrate. Scientific Reports, 2016, 6, 11.                                                                       | 3.3 | 154       |
| 35 | Cell surface syndecan-1 contributes to binding and function of macrophage migration inhibitory<br>factor (MIF) on epithelial tumor cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016,<br>1863, 717-726. | 4.1 | 13        |
| 36 | The perioperative time course and clinical significance of the chemokine <scp>CXCL</scp> 16 in patients undergoing cardiac surgery. Journal of Cellular and Molecular Medicine, 2016, 20, 104-115.                         | 3.6 | 14        |

| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Stimulated release and functional activity of surface expressed metalloproteinase ADAM17 in exosomes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2795-2808.                                                                  | 4.1  | 53        |
| 38 | Transmembrane chemokines act as receptors in a novel mechanism termed inverse signaling. ELife, 2016,<br>5, e10820.                                                                                                                                    | 6.0  | 26        |
| 39 | Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function. ELife, 2016, 5, .                                                                                                  | 6.0  | 124       |
| 40 | CX3CR1 is a gatekeeper for intestinal barrier integrity in mice: Limiting steatohepatitis by maintaining intestinal homeostasis. Hepatology, 2015, 62, 1405-1416.                                                                                      | 7.3  | 94        |
| 41 | A transmembrane C-terminal fragment of syndecan-1 is generated by the metalloproteinase ADAM17 and promotes lung epithelial tumor cell migration and lung metastasis formation. Cellular and Molecular Life Sciences, 2015, 72, 3783-3801.             | 5.4  | 32        |
| 42 | ADAM-family metalloproteinases in lung inflammation: potential therapeutic targets. American<br>Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L325-L343.                                                                  | 2.9  | 108       |
| 43 | SAR Studies of Exosite-Binding Substrate-Selective Inhibitors of <u>A</u> <u>D</u> isintegrin<br><u>A</u> nd <u>M</u> etalloprotease 17 (ADAM17) and Application as Selective in Vitro Probes. Journal<br>of Medicinal Chemistry, 2015, 58, 5808-5824. | 6.4  | 16        |
| 44 | Myeloid A Disintegrin and Metalloproteinase Domain 10 Deficiency Modulates Atherosclerotic Plaque<br>Composition by Shifting the Balance from Inflammation toward Fibrosis. American Journal of<br>Pathology, 2015, 185, 1145-1155.                    | 3.8  | 46        |
| 45 | A cytoplasmic C-terminal fragment of syndecan-1 is generated by sequential proteolysis and antagonizes syndecan-1 dependent lung tumor cell migration. Oncotarget, 2015, 6, 31295-31312.                                                               | 1.8  | 26        |
| 46 | ADAM 17 Regulates S1PR1 Surface Expression by its Ectodomain Shedding thereby Disrupting Endothelial Barrier Function. FASEB Journal, 2015, 29, 627.7.                                                                                                 | 0.5  | 0         |
| 47 | Smooth Muscle Cells Relay Acute Pulmonary Inflammation via Distinct ADAM17/ErbB Axes. Journal of Immunology, 2014, 192, 722-731.                                                                                                                       | 0.8  | 21        |
| 48 | ADAM metalloproteases promote a developmental switch in responsiveness to the axonal repellant<br>Sema3A. Nature Communications, 2014, 5, 4058.                                                                                                        | 12.8 | 39        |
| 49 | ADAM10 Is the Major Sheddase Responsible for the Release of Membrane-associated Meprin A. Journal of Biological Chemistry, 2014, 289, 13308-13322.                                                                                                     | 3.4  | 49        |
| 50 | Loss of the Timp gene family is sufficient for the acquisition of the CAF-like cell state. Nature Cell<br>Biology, 2014, 16, 889-901.                                                                                                                  | 10.3 | 174       |
| 51 | Leukocytes require ADAM10 but not ADAM17 for their migration and inflammatory recruitment into the alveolar space. Blood, 2014, 123, 4077-4088.                                                                                                        | 1.4  | 54        |
| 52 | The CXCL16–CXCR6 chemokine axis in glial tumors. Journal of Neuroimmunology, 2013, 260, 47-54.                                                                                                                                                         | 2.3  | 34        |
| 53 | Arterial and Venous Endothelia Display Differential Functional Fractalkine (CX <sub>3</sub> CL1)<br>Expression by Angiotensin-II. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 96-104.                                                | 2.4  | 32        |
| 54 | Growth arrest–specific protein 1 is a novel endogenous inhibitor of glomerular cell activation and<br>proliferation. Kidney International, 2013, 83, 251-263.                                                                                          | 5.2  | 24        |

| #  | Article                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | FcγRIII (CD16) equips immature 6-sulfo LacNAc–expressing dendritic cells (slanDCs) with a unique capacity to handle IgG-complexed antigens. Blood, 2013, 121, 3609-3618.                                                                                                                       | 1.4 | 39        |
| 56 | Chemokine Receptor CXCR6-Dependent Hepatic NK T Cell Accumulation Promotes Inflammation and<br>Liver Fibrosis. Journal of Immunology, 2013, 190, 5226-5236.                                                                                                                                    | 0.8 | 219       |
| 57 | Critical role of fractalkine (CX <sub>3</sub> CL1) in cigarette smoke-induced mononuclear cell adhesion to the arterial endothelium. Thorax, 2013, 68, 177-186.                                                                                                                                | 5.6 | 39        |
| 58 | ADAM17 Regulates Sphingosine 1 phosphate receptor 1 Cell Surface Expression and Downstream Signaling. FASEB Journal, 2013, 27, 1173.7.                                                                                                                                                         | 0.5 | 0         |
| 59 | The Cytosolic Domain of Protein-tyrosine Kinase 7 (PTK7), Cenerated from Sequential Cleavage by a<br>Disintegrin and Metalloprotease 17 (ADAM17) and γ-Secretase, Enhances Cell Proliferation and<br>Migration in Colon Cancer Cells. Journal of Biological Chemistry, 2012, 287, 25001-25009. | 3.4 | 56        |
| 60 | Contribution of Platelet CX <sub>3</sub> CR1 to Platelet–Monocyte Complex Formation and Vascular<br>Recruitment During Hyperlipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32,<br>1186-1193.                                                                             | 2.4 | 76        |
| 61 | Pathologic shear triggers shedding of vascular receptors: a novel mechanism for down-regulation of platelet glycoprotein VI in stenosed coronary vessels. Blood, 2012, 119, 4311-4320.                                                                                                         | 1.4 | 101       |
| 62 | A-Disintegrin and Metalloprotease (ADAM) 10 and 17 promote self-renewal of brain tumor sphere forming cells. Cancer Letters, 2012, 326, 79-87.                                                                                                                                                 | 7.2 | 19        |
| 63 | Lung endothelial ADAM17 regulates the acute inflammatory response to lipopolysaccharide. EMBO<br>Molecular Medicine, 2012, 4, 412-423.                                                                                                                                                         | 6.9 | 86        |
| 64 | Sitagliptin reduces plaque macrophage content and stabilises arteriosclerotic lesions in Apoe â^'/â^'<br>mice. Diabetologia, 2012, 55, 2267-2275.                                                                                                                                              | 6.3 | 81        |
| 65 | The role of ADAM-mediated shedding in vascular biology. European Journal of Cell Biology, 2012, 91, 472-485.                                                                                                                                                                                   | 3.6 | 181       |
| 66 | Involvement of TACE/ADAM17 and ADAM10 in etoposideâ€induced apoptosis of germ cells in rat spermatogenesis. Journal of Cellular Physiology, 2012, 227, 829-838.                                                                                                                                | 4.1 | 16        |
| 67 | In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood, 2011, 118, e156-e167.                                                                                                                                                                             | 1.4 | 218       |
| 68 | Etoposide induces apoptosis and upregulation of TACE/ADAM17 and ADAM10 in an in vitro male germ cell line model. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 120-128.                                                                                                 | 4.1 | 23        |
| 69 | Foxp3-Mediated Suppression of CD95L Expression Confers Resistance to Activation-Induced Cell Death in Regulatory T Cells. Journal of Immunology, 2011, 187, 1684-1691.                                                                                                                         | 0.8 | 49        |
| 70 | Assessment of Endothelial Permeability and Leukocyte Transmigration in Human Endothelial Cell<br>Monolayers. Methods in Molecular Biology, 2011, 763, 319-332.                                                                                                                                 | 0.9 | 8         |
| 71 | Pathological Shear Regulates ADAM10 Activity on Circulating Platelets. Blood, 2011, 118, 2194-2194.                                                                                                                                                                                            | 1.4 | Ο         |
| 72 | Requirements for leukocyte transmigration via the transmembrane chemokine CX3CL1. Cellular and<br>Molecular Life Sciences, 2010, 67, 4233-4248.                                                                                                                                                | 5.4 | 44        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | ADAM10 is expressed in human podocytes and found in urinary vesicles of patients with glomerular kidney diseases. Journal of Biomedical Science, 2010, 17, 3.                                                                      | 7.0 | 31        |
| 74 | A Disintegrin and Metalloproteinase 17 (ADAM17) Mediates Inflammation-induced Shedding of<br>Syndecan-1 and -4 by Lung Epithelial Cells. Journal of Biological Chemistry, 2010, 285, 555-564.                                      | 3.4 | 137       |
| 75 | Improved Synthesis of ADAM10 Inhibitor GI254023X. Neurodegenerative Diseases, 2010, 7, 232-238.                                                                                                                                    | 1.4 | 26        |
| 76 | TACE/ADAM17 is involved in germ cell apoptosis during rat spermatogenesis. Reproduction, 2010, 140, 305-317.                                                                                                                       | 2.6 | 23        |
| 77 | Distinct role of the intracellular C-terminus for subcellular expression, shedding and function of the murine transmembrane chemokine CX3CL1. Biochemical and Biophysical Research Communications, 2010, 395, 178-184.             | 2.1 | 14        |
| 78 | Interaction of vascular smooth muscle cells and monocytes by soluble factors synergistically<br>enhances IL-6 and MCP-1 production. American Journal of Physiology - Heart and Circulatory<br>Physiology, 2009, 296, H987-H996.    | 3.2 | 46        |
| 79 | Involvement of ADAM10 in axonal outgrowth and myelination of the peripheral nerve. Glia, 2009, 57, 1765-1774.                                                                                                                      | 4.9 | 24        |
| 80 | The angiotensin–calcineurin–NFAT pathway mediates stretch-induced up-regulation of matrix<br>metalloproteinases-2/-9 in atrial myocytes. Basic Research in Cardiology, 2009, 104, 435-448.                                         | 5.9 | 69        |
| 81 | ADAM10 Is the Constitutive Functional Sheddase of CD44 in Human Melanoma Cells. Journal of<br>Investigative Dermatology, 2009, 129, 1471-1482.                                                                                     | 0.7 | 74        |
| 82 | Human Renal Cancer Cells Express a Novel Membrane-Bound Interleukin-15 that Induces, in Response to<br>the Soluble Interleukin-15 Receptor α Chain, Epithelial-to-Mesenchymal Transition. Cancer Research,<br>2009, 69, 1561-1569. | 0.9 | 53        |
| 83 | Tumoural CXCL16 expression is a novel prognostic marker of longer survival times in renal cell cancer patients. European Journal of Cancer, 2009, 45, 478-489.                                                                     | 2.8 | 93        |
| 84 | Downregulation of junctional adhesion molecule-A is involved in the progression of clear cell renal cell carcinoma. Biochemical and Biophysical Research Communications, 2009, 380, 387-391.                                       | 2.1 | 40        |
| 85 | The good, the bad and the ugly substrates for ADAM10 and ADAM17 in brain pathology, inflammation and cancer. Seminars in Cell and Developmental Biology, 2009, 20, 164-174.                                                        | 5.0 | 203       |
| 86 | Regulation of nerve growth factor in the heart: The role of the calcineurin–NFAT pathway. Journal of<br>Molecular and Cellular Cardiology, 2009, 46, 568-578.                                                                      | 1.9 | 47        |
| 87 | Regulated release and functional modulation of junctional adhesion molecule A by disintegrin metalloproteinases. Blood, 2009, 113, 4799-4809.                                                                                      | 1.4 | 144       |
| 88 | Overexpression of CXCL16 and its receptor CXCR6/Bonzo promotes growth of human schwannomas.<br>Glia, 2008, 56, 764-774.                                                                                                            | 4.9 | 42        |
| 89 | Homocysteine upâ€regulates vascular transmembrane chemokine CXCL16 and induces CXCR6+<br>lymphocyte recruitment <i>in vitro</i> and <i>in vivo</i> . Journal of Cellular and Molecular<br>Medicine, 2008, 12, 1700-1709.           | 3.6 | 19        |
| 90 | Glial cross-talk by transmembrane chemokines CX3CL1 and CXCL16. Journal of Neuroimmunology, 2008, 198, 92-97.                                                                                                                      | 2.3 | 36        |

6

| #   | Article                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | ADAM10 Regulates Endothelial Permeability and T-Cell Transmigration by Proteolysis of Vascular Endothelial Cadherin. Circulation Research, 2008, 102, 1192-1201.                          | 4.5  | 264       |
| 92  | The chemokine CXCL16 induces migration and invasion of glial precursor cells via its receptor CXCR6.<br>Molecular and Cellular Neurosciences, 2008, 39, 133-141.                          | 2.2  | 51        |
| 93  | Tumor-Associated MICA Is Shed by ADAM Proteases. Cancer Research, 2008, 68, 6368-6376.                                                                                                    | 0.9  | 322       |
| 94  | Selenium supplementation induces metalloproteinase-dependent L-selectin shedding from monocytes.<br>Journal of Leukocyte Biology, 2008, 83, 1388-1395.                                    | 3.3  | 28        |
| 95  | Tetraspanins Regulate ADAM10-Mediated Cleavage of TNF-α and Epidermal Growth Factor. Journal of<br>Immunology, 2008, 181, 7002-7013.                                                      | 0.8  | 132       |
| 96  | Sialyltransferase ST3Gal-IV controls CXCR2-mediated firm leukocyte arrest during inflammation.<br>Journal of Experimental Medicine, 2008, 205, 1435-1446.                                 | 8.5  | 66        |
| 97  | Characterization of CXCL16 and ADAM10 in the normal and transplanted kidney. Kidney International, 2008, 74, 328-338.                                                                     | 5.2  | 51        |
| 98  | CXCR6 Promotes Atherosclerosis by Supporting T-Cell Homing, Interferon-Î <sup>3</sup> Production, and Macrophage Accumulation in the Aortic Wall. Circulation, 2007, 116, 1801-1811.      | 1.6  | 114       |
| 99  | Importance of CXC Chemokine Receptor 2 in the Homing of Human Peripheral Blood Endothelial<br>Progenitor Cells to Sites of Arterial Injury. Circulation Research, 2007, 100, 590-597.     | 4.5  | 224       |
| 100 | Ligand Binding and Calcium Influx Induce Distinct Ectodomain/γ-Secretase-processing Pathways of EphB2 Receptor. Journal of Biological Chemistry, 2007, 282, 16155-16163.                  | 3.4  | 106       |
| 101 | Regulated Shedding of Transmembrane Chemokines by the Disintegrin and Metalloproteinase 10<br>Facilitates Detachment of Adherent Leukocytes. Journal of Immunology, 2007, 178, 8064-8072. | 0.8  | 151       |
| 102 | Sequential processing of the transmembrane chemokines CX3CL1 and CXCL16 by α- and γ-secretases.<br>Biochemical and Biophysical Research Communications, 2007, 358, 233-240.               | 2.1  | 84        |
| 103 | ADAM10 Inhibition of Human CD30 Shedding Increases Specificity of Targeted Immunotherapy In vitro.<br>Cancer Research, 2007, 67, 332-338.                                                 | 0.9  | 62        |
| 104 | Antagonistic roles of full-length N-cadherin and its soluble BMP cleavage product in neural crest delamination. Development (Cambridge), 2007, 134, 491-501.                              | 2.5  | 183       |
| 105 | Transmembrane chemokines: Versatile â€~special agents' in vascular inflammation. Thrombosis and<br>Haemostasis, 2007, 97, 694-703.                                                        | 3.4  | 156       |
| 106 | Tumor necrosis factor $\hat{l}_{\pm}$ activates release of B lymphocyte stimulator by neutrophils infiltrating the rheumatoid joint. Arthritis and Rheumatism, 2007, 56, 1776-1786.       | 6.7  | 63        |
| 107 | RECK modulates Notch signaling during cortical neurogenesis by regulating ADAM10 activity. Nature Neuroscience, 2007, 10, 838-845.                                                        | 14.8 | 130       |
| 108 | ADAM10 regulates FasL cell surface expression and modulates FasL-induced cytotoxicity and activation-induced cell death. Cell Death and Differentiation, 2007, 14, 1040-1049.             | 11.2 | 165       |

| #   | Article                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Constitutive Expression and Regulated Release of the Transmembrane Chemokine CXCL16 in Human and Murine Skin. Journal of Investigative Dermatology, 2007, 127, 1444-1455.                                                                                                        | 0.7  | 66        |
| 110 | Transmembrane chemokines: versatile 'special agents' in vascular inflammation. Thrombosis and<br>Haemostasis, 2007, 97, 694-703.                                                                                                                                                 | 3.4  | 55        |
| 111 | A role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44.<br>Biochemical Journal, 2006, 393, 609-618.                                                                                                                                     | 3.7  | 217       |
| 112 | ADAM10 is a principal 'sheddase' of the low-affinity immunoglobulin E receptor CD23. Nature<br>Immunology, 2006, 7, 1293-1298.                                                                                                                                                   | 14.5 | 189       |
| 113 | Breaking up the tie: Disintegrin-like metalloproteinases as regulators of cell migration in inflammation and invasion. , 2006, 111, 985-1006.                                                                                                                                    |      | 115       |
| 114 | Regulated ADAM10-dependent Ectodomain Shedding of γ-Protocadherin C3 Modulates Cell-Cell<br>Adhesion. Journal of Biological Chemistry, 2006, 281, 21735-21744.                                                                                                                   | 3.4  | 94        |
| 115 | Mistargeting of Normal Cells in Anti-CD30 Immunotherapy of Lymphoma Cells Is Blocked by Selective<br>Metalloproteinase Inhibitor Blood, 2006, 108, 2518-2518.                                                                                                                    | 1.4  | Ο         |
| 116 | Enhanced expression and shedding of the transmembrane chemokine CXCL16 by reactive astrocytes and glioma cells. Journal of Neurochemistry, 2005, 93, 1293-1303.                                                                                                                  | 3.9  | 117       |
| 117 | ADAM10 cleavage of N-cadherin and regulation of cell–cell adhesion and β-catenin nuclear signalling.<br>EMBO Journal, 2005, 24, 742-752.                                                                                                                                         | 7.8  | 438       |
| 118 | ADAM10 cleavage of N-cadherin and regulation of cell–cell adhesion and β-catenin nuclear signalling.<br>EMBO Journal, 2005, 24, 1762-1762.                                                                                                                                       | 7.8  | 5         |
| 119 | Matrix metalloproteinase 19 processes the laminin 5 gamma 2 chain and induces epithelial cell<br>migration. Cellular and Molecular Life Sciences, 2005, 62, 870-880.                                                                                                             | 5.4  | 65        |
| 120 | ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and<br>β-catenin translocation. Proceedings of the National Academy of Sciences of the United States of<br>America, 2005, 102, 9182-9187.                                            | 7.1  | 604       |
| 121 | Soluble Axl Is Generated by ADAM10-Dependent Cleavage and Associates with Gas6 in Mouse Serum.<br>Molecular and Cellular Biology, 2005, 25, 9324-9339.                                                                                                                           | 2.3  | 70        |
| 122 | L1 Is Sequentially Processed by Two Differently Activated Metalloproteases and Presenilin/γ-Secretase<br>and Regulates Neural Cell Adhesion, Cell Migration, and Neurite Outgrowth. Molecular and Cellular<br>Biology, 2005, 25, 9040-9053.                                      | 2.3  | 212       |
| 123 | Metalloproteinase Inhibitors for the Disintegrin-Like Metalloproteinases ADAM10 and ADAM17 that<br>Differentially Block Constitutive and Phorbol Ester-Inducible Shedding of Cell Surface Molecules.<br>Combinatorial Chemistry and High Throughput Screening, 2005, 8, 161-171. | 1.1  | 293       |
| 124 | Evidence for a Role of ADAM17 (TACE) in the Regulation of Platelet Glycoprotein V. Journal of Biological Chemistry, 2005, 280, 14462-14468.                                                                                                                                      | 3.4  | 97        |
| 125 | Fast modulation of heat-activated ionic current by proinflammatory interleukin 6 in rat sensory neurons. Brain, 2005, 128, 1634-1641.                                                                                                                                            | 7.6  | 123       |
| 126 | Natural Soluble Interleukin-15Rα Is Generated by Cleavage That Involves the Tumor Necrosis<br>Factor-α-converting Enzyme (TACE/ADAM17). Journal of Biological Chemistry, 2004, 279, 40368-40375.                                                                                 | 3.4  | 65        |

| #   | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | The Transmembrane CXC-Chemokine Ligand 16 Is Induced by IFN-γ and TNF-α and Shed by the Activity of the Disintegrin-Like Metalloproteinase ADAM10. Journal of Immunology, 2004, 172, 6362-6372.                                                            | 0.8 | 369       |
| 128 | Cellular Cholesterol Depletion Triggers Shedding of the Human Interleukin-6 Receptor by ADAM10 and ADAM17 (TACE). Journal of Biological Chemistry, 2003, 278, 38829-38839.                                                                                 | 3.4 | 332       |
| 129 | The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood, 2003, 102, 1186-1195.                                                                  | 1.4 | 624       |
| 130 | The CXC Chemokine NAP-2 Mediates Differential Heterologous Desensitization of Neutrophil Effector<br>Functions Elicited by Platelet-Activating Factor. Journal of Interferon and Cytokine Research, 2002, 22,<br>257-267.                                  | 1.2 | 7         |
| 131 | Fractalkine Is Expressed by Smooth Muscle Cells in Response to IFN-Î <sup>3</sup> and TNF-α and Is Modulated by Metalloproteinase Activity. Journal of Immunology, 2002, 168, 604-612.                                                                     | 0.8 | 131       |
| 132 | Dipeptidyl peptidase IV (CD26) on T cells cleaves the CXC chemokine CXCL11 (I-TAC) and abolishes the stimulating but not the desensitizing potential of the chemokine. Journal of Leukocyte Biology, 2002, 72, 183-91.                                     | 3.3 | 55        |
| 133 | Binding inhibition of type 1 fimbriae to human granulocytes: a flow cytometric inhibition assay using trivalent cluster mannosides. Medical Microbiology and Immunology, 2001, 190, 145-149.                                                               | 4.8 | 5         |
| 134 | The β-thromboglobulins and platelet factor 4: blood platelet-derived CXC chemokines with divergent roles in early neutrophil regulation. Journal of Leukocyte Biology, 2000, 67, 471-478.                                                                  | 3.3 | 170       |
| 135 | Plateletâ€derived CXC chemokines: old players in new games. Immunological Reviews, 2000, 177, 204-216.                                                                                                                                                     | 6.0 | 152       |
| 136 | Down-regulation of neutrophil functions by the ELR+CXC chemokine platelet basic protein. Blood, 2000, 96, 2965-2972.                                                                                                                                       | 1.4 | 36        |
| 137 | Identification of Distinct Surface-Expressed and Intracellular CXC-Chemokine Receptor 2 Glycoforms<br>in Neutrophils: <i>N</i> -Glycosylation Is Essential for Maintenance of Receptor Surface Expression.<br>Journal of Immunology, 2000, 165, 1044-1052. | 0.8 | 58        |
| 138 | Down-regulation of neutrophil functions by the ELR+CXC chemokine platelet basic protein. Blood, 2000, 96, 2965-2972.                                                                                                                                       | 1.4 | 4         |
| 139 | The CXC-Chemokine Neutrophil-Activating Peptide-2 Induces Two Distinct Optima of Neutrophil<br>Chemotaxis by Differential Interaction With Interleukin-8 Receptors CXCR-1 and CXCR-2. Blood, 1997,<br>90, 4588-4597.                                       | 1.4 | 121       |
| 140 | The CXC-Chemokine Neutrophil-Activating Peptide-2 Induces Two Distinct Optima of Neutrophil<br>Chemotaxis by Differential Interaction With Interleukin-8 Receptors CXCR-1 and CXCR-2. Blood, 1997,<br>90, 4588-4597.                                       | 1.4 | 9         |
| 141 | <i>In vitro</i> modulation of induced neutrophil activation by different surfactant preparations.<br>European Respiratory Journal, 1996, 9, 752-757.                                                                                                       | 6.7 | 18        |