Susan Goldin-Meadow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1694362/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emergent Morphology in Child Homesign: Evidence from Number Language. Language Learning and Development, 2022, 18, 16-40.	1.4	6
2	Gesture is the primary modality for language creation. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220066.	2.6	7
3	Do gestures really facilitate speech production?. Journal of Experimental Psychology: General, 2022, 151, 1252-1271.	2.1	6
4	The Seeds of the Noun–Verb Distinction in the Manual Modality: Improvisation and Interaction in the Emergence of Grammatical Categories. Languages, 2022, 7, 95.	0.6	1
5	Harnessing Gesture to Understand and Support Healthy Development. , 2022, , .		0
6	Teaching stereoisomers through gesture, action, and mental imagery. Chemistry Education Research and Practice, 2022, 23, 698-713.	2.5	5
7	Linking language to sensory experience: Onomatopoeia in early language development. Developmental Science, 2021, 24, e13066.	2.4	17
8	Unpacking the Gestures of Chemistry Learners: What the Hands Tell Us About Correct and Incorrect Conceptions of Stereochemistry. Discourse Processes, 2021, 58, 213-232.	1.8	10
9	Effects of Time-Varying Parent Input on Children's Language Outcomes Differ for Vocabulary and Syntax. Psychological Science, 2021, 32, 536-548.	3.3	14
10	Personal narrative as a "breeding ground―for higher-order thinking talk in early parent–child interactions Developmental Psychology, 2021, 57, 519-534.	1.6	10
11	Children integrate speech and gesture across a wider temporal window than speech and action when learning a math concept. Cognition, 2021, 210, 104604.	2.2	2
12	The Predictive Value of Nonâ€Referential Beat Gestures: Early Use in Parent–Child Interactions Predicts Narrative Abilities at 5 Years of Age. Child Development, 2021, 92, 2335-2355.	3.0	7
13	Changing language input following market integration in a Yucatec Mayan community. PLoS ONE, 2021, 16, e0252926.	2.5	6
14	Structural biases that children bring to language learning: A cross-cultural look at gestural input to homesign. Cognition, 2021, 211, 104608.	2.2	12
15	Expertise Modulates Neural Stimulus-Tracking. ENeuro, 2021, 8, ENEURO.0065-21.2021.	1.9	Ο
16	People Are Less Susceptible to Illusion When They Use Their Hands to Communicate Rather Than Estimate. Psychological Science, 2021, 32, 1227-1237.	3.3	2
17	Parent Language Input Prior to School Forecasts Change in Children's Language-Related Cortical Structures During Mid-Adolescence. Frontiers in Human Neuroscience, 2021, 15, 650152.	2.0	3
18	Sign language, like spoken language, promotes object categorization in young hearing infants. Cognition, 2021, 215, 104845.	2.2	3

6

19 Crossling Review, 2	uistic similarity and variation in the simultaneous morphology of sign languages. Linguistic		
	021, 37, 571-608.	0.4	3
20 Mechanis 527-546.	ms of Embodied Learning Through Gestures and Actions: Lessons from Development. , 2021, ,		4
21 Theories	of Language Acquisition. , 2020, , 356-364.		0
22 Discoveri 195-201.	ng the Biases Children Bring to Language Learning. Child Development Perspectives, 2020, 14,	3.9	4
23 Talking w Embodim	ith Your (Artificial) Hands: Communicative Hand Gestures as an Implicit Measure of ent. IScience, 2020, 23, 101650.	4.1	8
Longitud 24 Proceedii 27945-22	nally adaptive assessment and instruction increase numerical skills of preschool children. ngs of the National Academy of Sciences of the United States of America, 2020, 117, 1953.	7.1	11
25 The comr Language	nunicative importance of agent-backgrounding: Evidence from homesign and Nicaraguan Sign 2. Cognition, 2020, 203, 104332.	2.2	7
26 Unconsci	ous Number Discrimination in the Human Visual System. Cerebral Cortex, 2020, 30, 5821-5829.	2.9	11
27 Language 27 2020, 12	e development and brain reorganization in a child born without the left hemisphere. Cortex, 7, 290-312.	2.4	14
28 The origin Cognition	ns of higher-order thinking lie in children's spontaneous talk across the pre-school years. n, 2020, 200, 104274.	2.2	10
29 Current F 2020, 14	esearch in Pragmatic Language Use Among Deaf and Hard of Hearing Children. Pediatrics, 6, S237-S245.	2.1	19
30 Using Ge 2020, 14	sture To Identify and Address Early Concerns About Language and Pragmatics. Pediatrics, 6, S278-S283.	2.1	5
31 The noun	-verb distinction in established and emergent sign systems. Language, 2019, 95, 230-267.	0.6	25
32 Speech-a Neuropsy	ccompanying gestures are not processed by the language-processing mechanisms. chologia, 2019, 132, 107132.	1.6	29
33 The emer Academy	gence of the formal category "symmetry―in a new sign language. Proceedings of the National of Sciences of the United States of America, 2019, 116, 11705-11711.	7.1	10
34 Learning Attentior	math by hand: The neural effects of gesture-based instruction in 8-year-old children. , Perception, and Psychophysics, 2019, 81, 2343-2353.	1.3	25
35 Manual d	irectional gestures facilitate cross-modal perceptual learning. Cognition, 2019, 187, 178-187.	2.2	20

Harnessing Our Hands to Teach Mathematics. , 2019, , 209-234.

#	Article	IF	CITATIONS
37	Number gestures predict learning of number words. Developmental Science, 2019, 22, e12791.	2.4	19
38	Parents' early book reading to children: Relation to children's later language and literacy outcomes controlling for other parent language input. Developmental Science, 2019, 22, e12764.	2.4	80
39	Occluding the face diminishes the conceptual accessibility of an animate agent. Language, Cognition and Neuroscience, 2019, 34, 273-288.	1.2	10
40	Children's Early Decontextualized Talk Predicts Academic Language Proficiency in Midadolescence. Child Development, 2019, 90, 1650-1663.	3.0	105
41	Breaking down gesture and action in mental rotation: Understanding the components of movement that promote learning Developmental Psychology, 2019, 55, 981-993.	1.6	13
42	Comparing sign language and gesture: Insights from pointing. Glossa, 2019, 4, .	0.5	40
43	Functional neuroanatomy of gesture–speech integration in children varies with individual differences in gesture processing. Developmental Science, 2018, 21, e12648.	2.4	25
44	Gesture helps learners learn, but not merely by guiding their visual attention. Developmental Science, 2018, 21, e12664.	2.4	53
45	Mental Transformation Skill in Young Children: The Role of Concrete and Abstract Motor Training. Cognitive Science, 2018, 42, 1207-1228.	1.7	19
46	Gesture for generalization: gesture facilitates flexible learning of words for actions on objects. Developmental Science, 2018, 21, e12656.	2.4	43
47	Gesture in Experimental Studies. Organizational Research Methods, 2018, 21, 489-499.	9.1	19
48	Blind Speakers Show Languageâ€5pecific Patterns in Coâ€5peech Gesture but <i>Not</i> Silent Gesture. Cognitive Science, 2018, 42, 1001-1014.	1.7	16
49	Unpacking the Ontogeny of Gesture Understanding: How Movement Becomes Meaningful Across Development. Child Development, 2018, 89, e245-e260.	3.0	9
50	The Role of Gesture in Supporting Mental Representations: The Case of Mental Abacus Arithmetic. Cognitive Science, 2018, 42, 554-575.	1.7	48
51	Taking a Hands-on Approach to Learning. Policy Insights From the Behavioral and Brain Sciences, 2018, 5, 163-170.	2.4	8
52	The Palm-Up Puzzle: Meanings and Origins of a Widespread Form in Gesture and Sign. Frontiers in Communication, 2018, 3, .	1.2	52
53	Meaning before order: Cardinal principle knowledge predicts improvement in understanding the successor principle and exact ordering. Cognition, 2018, 180, 59-81.	2.2	36
54	Creating Images With the Stroke of a Hand: Depiction of Size and Shape in Sign Language. Frontiers in Psychology, 2018, 9, 1276.	2.1	13

Susan Goldin-Meadow

#	Article	IF	CITATIONS
55	Parent praise to toddlers predicts fourth grade academic achievement via children's incremental mindsets Developmental Psychology, 2018, 54, 397-409.	1.6	64
56	Actions speak louder than gestures when you are 2 years old Developmental Psychology, 2018, 54, 1809-1821.	1.6	9
57	What the hands can tell us about language emergence. Psychonomic Bulletin and Review, 2017, 24, 213-218.	2.8	16
58	Language Emergence. Annual Review of Linguistics, 2017, 3, 363-388.	2.3	31
59	Gesture, sign, and language: The coming of age of sign language and gesture studies. Behavioral and Brain Sciences, 2017, 40, e46.	0.7	193
60	Better together: Simultaneous presentation of speech and gesture in math instruction supports generalization and retention. Learning and Instruction, 2017, 50, 65-74.	3.2	60
61	When Gesture Becomes Analogy. Topics in Cognitive Science, 2017, 9, 719-737.	1.9	9
62	Gesture and language: Distinct subsystem of an integrated whole. Behavioral and Brain Sciences, 2017, 40, e74.	0.7	12
63	Visual cortex entrains to sign language. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6352-6357.	7.1	39
64	Using our hands to change our minds. Wiley Interdisciplinary Reviews: Cognitive Science, 2017, 8, e1368.	2.8	11
65	Statistical evidence that a child can create a combinatorial linguistic system without external linguistic input: Implications for language evolution. Neuroscience and Biobehavioral Reviews, 2017, 81, 150-157.	6.1	13
66	The development of iconicity in children's co-speech gesture and homesign. LIA Language, Interaction and Acquisition, 2017, 8, 42-68.	0.5	10
67	The Development of Causal Structure without a Language Model. Language Learning and Development, 2017, 13, 286-299.	1.4	10
68	The pace of vocabulary growth during preschool predicts cortical structure at school age. Neuropsychologia, 2017, 98, 13-23.	1.6	25
69	Gesture as representational action: A paper about function. Psychonomic Bulletin and Review, 2017, 24, 652-665.	2.8	66
70	ChapterÂ17. Understanding gesture as representational action. Gesture Studies, 2017, , 381-396.	0.6	1
71	ChapterÂ18. So how does gesture function in speaking, communication, and thinking?. Gesture Studies, 2017, , 397-412.	0.6	4
72	Gesture's Role in Learning and Processing Language. , 2016, , 275-283.		1

#	Article	IF	CITATIONS
73	Moving to Learn: How Guiding the Hands Can Set the Stage for Learning. Cognitive Science, 2016, 40, 1831-1849.	1.7	35
74	Spatial analogies pervade complex relational reasoning: Evidence from spontaneous gestures. Cognitive Research: Principles and Implications, 2016, 1, 28.	2.0	12
75	A parent-directed language intervention for children of low socioeconomic status: a randomized controlled pilot study. Journal of Child Language, 2016, 43, 366-406.	1.2	212
76	Repeated movie viewings produce similar local activity patterns but different network configurations. Neurolmage, 2016, 142, 613-627.	4.2	24
77	Is Seeing Gesture Necessary to Gesture Like a Native Speaker?. Psychological Science, 2016, 27, 737-747.	3.3	53
78	Does language shape silent gesture?. Cognition, 2016, 148, 10-18.	2.2	54
79	What makes a movement a gesture?. Cognition, 2016, 146, 339-348.	2.2	50
80	L'enfant parle d'abord avec les mains. Enfance, 2016, 2016, 435-443.	0.2	0
81	L'enfant parle d'abord avec les mains. Enfance, 2016, N° 4, 435-443.	0.2	1
82	Vocabulary, syntax, and narrative development in typically developing children and children with early unilateral brain injury: Early parental talk about the "there-and-then―matters Developmental Psychology, 2015, 51, 161-175.	1.6	104
83	From action to abstraction: Gesture as a mechanism of change. Developmental Review, 2015, 38, 167-184.	4.7	40
84	Gesture for Linguists: A Handy Primer. Language and Linguistics Compass, 2015, 9, 437-451.	2.3	51
85	Gesture as a Window onto Communicative Abilities: Implications for Diagnosis and Intervention. Perspectives on Language Learning and Education, 2015, 22, 50-60.	0.1	20
86	Language by mouth and by hand. Frontiers in Psychology, 2015, 6, 78.	2.1	1
87	Gesturing has a larger impact on problem-solving than action, even when action is accompanied by words. Language, Cognition and Neuroscience, 2015, 30, 251-260.	1.2	33
88	The Resilience of Structure Built Around the Predicate: Homesign Gesture Systems in Turkish and American Deaf Children. Journal of Cognition and Development, 2015, 16, 55-80.	1.3	38
89	Establishing and accounting for the resilient properties of language. Language, Cognition and Neuroscience, 2015, 30, 928-931.	1.2	0
90	Gesture as a window onto children's number knowledge. Cognition, 2015, 144, 14-28.	2.2	59

4

#	Article	IF	CITATIONS
91	Learning from gesture: How early does it happen?. Cognition, 2015, 142, 138-147.	2.2	42
92	Experimentally Induced Increases in Early Gesture Lead to Increases in Spoken Vocabulary. Journal of Cognition and Development, 2015, 16, 199-220.	1.3	70
93	A tale of two hands: children's early gesture use in narrative production predicts later narrative structure in speech. Journal of Child Language, 2015, 42, 662-681.	1.2	62
94	On the way to language: event segmentation in homesign and gesture. Journal of Child Language, 2015, 42, 64-94.	1.2	45
95	Learning from Gesture: How Our Hands Change Our Minds. Educational Psychology Review, 2015, 27, 405-412.	8.4	93
96	The Impact of Time on Predicate Forms in the Manual Modality: Signers, Homesigners, and Silent Gesturers. Topics in Cognitive Science, 2015, 7, 169-184.	1.9	17
97	Studying the mechanisms of language learning by varying the learning environment and the learner. Language, Cognition and Neuroscience, 2015, 30, 899-911.	1.2	12
98	Creating a communication system from scratch: gesture beats vocalization hands down. Frontiers in Psychology, 2014, 5, 354.	2.1	62
99	New evidence about language and cognitive development based on a longitudinal study: Hypotheses for intervention American Psychologist, 2014, 69, 588-599.	4.2	117
100	Understanding gesture: Is the listener's motor system involved?. Journal of Experimental Psychology: General, 2014, 143, 195-204.	2.1	61
101	Frontal and temporal contributions to understanding the iconic coâ€speech gestures that accompany speech. Human Brain Mapping, 2014, 35, 900-917.	3.6	72
102	Prosody in a communication system developed without a language model. Sign Language and Linguistics (Online), 2014, 17, 181-212.	0.5	9
103	Do iconic gestures pave the way for children's early verbs?. Applied Psycholinguistics, 2014, 35, 1143-1162.	1.1	80
104	In search of resilient and fragile properties of language. Journal of Child Language, 2014, 41, 64-77.	1.2	6
105	How gesture works to change our minds. Trends in Neuroscience and Education, 2014, 3, 4-6.	3.1	37
106	From Action to Abstraction. Psychological Science, 2014, 25, 903-910.	3.3	184
107	Widening the lens: what the manual modality reveals about language, learning and cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130295.	4.0	38

Language and the manual modality The communicative resilience of the human species. , 2014, , 78-101.

#	Article	IF	CITATIONS
109	Narrative processing in typically developing children and children with early unilateral brain injury: Seeing gesture matters Developmental Psychology, 2014, 50, 815-828.	1.6	33
110	Pointing and naming are not redundant: Children use gesture to modify nouns before they modify nouns in speech Developmental Psychology, 2014, 50, 1660-1666.	1.6	52
111	Teaching moral reasoning through gesture. Developmental Science, 2014, 17, 984-990.	2.4	31
112	How gesture helps children learn language. Trends in Language Acquisition Research, 2014, , 157-172.	0.3	4
113	Gesture in all its forms. , 2014, , 289-308.		0
114	GETTING COMMUNICATION STARTED: THE SUPERIORITY OF GESTURE OVER NON-LINGUISTIC VOCALIZATION. , 2014, , .		0
115	Communicating about quantity without a language model: Number devices in homesign grammar. Cognitive Psychology, 2013, 67, 1-25.	2.2	42
116	Generating a lexicon without a language model: Do words for number count?. Journal of Memory and Language, 2013, 69, 496-505.	2.1	22
117	Quality of early parent input predicts child vocabulary 3 years later. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11278-11283.	7.1	279
118	Gesture's Role in Speaking, Learning, and Creating Language. Annual Review of Psychology, 2013, 64, 257-283.	17.7	278
119	Individual differences in mental rotation: what does gesture tell us?. Cognitive Processing, 2013, 14, 153-162.	1.4	39
120	Spatial language facilitates spatial cognition: Evidence from children who lack language input. Cognition, 2013, 127, 318-330.	2.2	80
121	Brain function overlaps when people observe emblems, speech, and grasping. Neuropsychologia, 2013, 51, 1619-1629.	1.6	57
122	What counts as effective input for word learning?. Journal of Child Language, 2013, 40, 672-686.	1.2	125
123	How handshape type can distinguish between nouns and verbs in homesign. Gesture, 2013, 13, 354-376.	0.2	16
124	Gesturing with an injured brain: How gesture helps children with early brain injury learn linguistic constructions. Journal of Child Language, 2013, 40, 69-105.	1.2	21
125	Parent Praise to 1―to 3‥earâ€Olds Predicts Children's Motivational Frameworks 5ÂYears Later. Child Development, 2013, 84, 1526-1541	3.0	255
126	Homesign as a way-station between co-speech gesture and sign language: the evolution of		7

segmentation and sequencing. , 2013, , 62-76.

#	Article	IF	CITATIONS
127	A word in the hand: action, gesture and mental representation in humans and non-human primates. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 129-143.	4.0	109
128	Gestures, but not meaningless movements, lighten working memory load when explaining math. Language and Cognitive Processes, 2012, 27, 594-610.	2.2	133
129	IS PANTOMIME A LIKELY STAGE IN LANGUAGE EVOLUTION? EVIDENCE FROM HUMAN AND PRIMATE GESTURE. , 2012, , .		3
130	Embodied Learning Across the Life Span. Topics in Cognitive Science, 2012, 4, 731-739.	1.9	122
131	Doing gesture promotes learning a mental transformation task better than seeing gesture. Developmental Science, 2012, 15, 876-884.	2.4	72
132	Sensitivity of alpha and beta oscillations to sensorimotor characteristics of action: An EEG study of action production and gesture observation. Neuropsychologia, 2012, 50, 2745-2751.	1.6	61
133	Turkish- and English-speaking children display sensitivity to perceptual context in the referring expressions they produce in speech and gesture. Language and Cognitive Processes, 2012, 27, 844-867.	2.2	25
134	Learning what children know about space from looking at their hands: The added value of gesture in spatial communication. Journal of Experimental Child Psychology, 2012, 111, 587-606.	1.4	35
135	Hierarchical structure in a self-created communication system: Building nominal constituents in homesign. Language, 2012, 88, 732-763.	0.6	43
136	The gestures ASL signers use tell us when they are ready to learn math. Cognition, 2012, 123, 448-453.	2.2	59
137	Gesture in the developing brain. Developmental Science, 2012, 15, 165-180.	2.4	48
138	Language input and acquisition in a Mayan village: how important is directed speech?. Developmental Science, 2012, 15, 659-673.	2.4	162
139	The Pace of Vocabulary Growth Helps Predict Later Vocabulary Skill. Child Development, 2012, 83, 508-525.	3.0	211
140	When does a system become phonological? Handshape production in gesturers, signers, and homesigners. Natural Language and Linguistic Theory, 2012, 30, 1-31.	1.0	116
141	Introduction: Perspectives on Cognition and Language. Language Learning and Development, 2011, 7, 251-252.	1.4	1
142	Negation, questions, and structure building in a homesign system. Cognition, 2011, 118, 398-416.	2.2	66
143	Learning through gesture. Wiley Interdisciplinary Reviews: Cognitive Science, 2011, 2, 595-607.	2.8	73
144	Number without a language model. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3163-3168.	7.1	161

SUSAN GOLDIN-MEADOW

#	Article	IF	CITATIONS
145	Narrative skill in children with early unilateral brain injury: a possible limit to functional plasticity. Developmental Science, 2010, 13, 636-647.	2.4	36
146	Gesturing makes memories that last. Journal of Memory and Language, 2010, 63, 465-475.	2.1	103
147	Gesturing Saves Cognitive Resources When Talking About Nonpresent Objects. Cognitive Science, 2010, 34, 602-619.	1.7	166
148	Early Gesture Predicts Language Delay in Children With Pre―or Perinatal Brain Lesions. Child Development, 2010, 81, 528-539.	3.0	77
149	Sex differences in language first appear in gesture. Developmental Science, 2010, 13, 752-760.	2.4	74
150	THE EVOLUTION OF SEGMENTATION AND SEQUENCING: EVIDENCE FROM HOMESIGN AND NICARAGUAN SIGN LANGUAGE. , 2010, , .		7
151	When speech is ambiguous, gesture steps in: Sensitivity to discourse-pragmatic principles in early childhood. Applied Psycholinguistics, 2010, 31, 209-224.	1.1	43
152	When gesture does and does not promote learning. Language and Cognition, 2010, 2, 1-19.	0.6	30
153	Widening the Lens on Language Learning: Language Creation in Deaf Children and Adults in Nicaragua. Human Development, 2010, 53, 303-311.	2.0	16
154	Action's Influence on Thought: The Case of Gesture. Perspectives on Psychological Science, 2010, 5, 664-674.	9.0	248
155	Truth Is at Hand. Psychological Science, 2010, 21, 623-628.	3.3	71
156	Le rÃ1e des gestes dans la création et l'acquisition du langage. Enfance, 2010, 2010, 239.	0.2	8
157	Le rÃ1e des gestes dans la création et l'acquisition du langage. Enfance, 2010, N° 3, 239-255.	0.2	0
158	Gesturing Gives Children New Ideas About Math. Psychological Science, 2009, 20, 267-272.	3.3	337
159	Differences in Early Gesture Explain SES Disparities in Child Vocabulary Size at School Entry. Science, 2009, 323, 951-953.	12.6	393
160	Does language about similarity play a role in fostering similarity comparison in children?. Cognition, 2009, 112, 217-228.	2.2	22
161	Gestures Orchestrate Brain Networks for Language Understanding. Current Biology, 2009, 19, 661-667.	3.9	109
162	Coâ€speech gestures influence neural activity in brain regions associated with processing semantic information. Human Brain Mapping, 2009, 30, 3509-3526.	3.6	170

#	Article	IF	CITATIONS
163	Using the Hands to Identify Who Does What to Whom: Gesture and Speech Go Handâ€inâ€Hand. Cognitive Science, 2009, 33, 115-125.	1.7	99
164	Early gesture <i>selectively</i> predicts later language learning. Developmental Science, 2009, 12, 182-187.	2.4	319
165	How Gesture Promotes Learning Throughout Childhood. Child Development Perspectives, 2009, 3, 106-111.	3.9	70
166	When gesture-speech combinations do and do not index linguistic change. Language and Cognitive Processes, 2009, 24, 190-217.	2.2	136
167	Does linguistic input play the same role in language learning for children with and without early brain injury?. Developmental Psychology, 2009, 45, 90-102.	1.6	59
168	Gesturing makes learning last. Cognition, 2008, 106, 1047-1058.	2.2	369
169	Hands in the air: Using ungrounded iconic gestures to teach children conservation of quantity Developmental Psychology, 2008, 44, 1277-1287.	1.6	146
170	Learning words by hand: Gesture's role in predicting vocabulary development. First Language, 2008, 28, 182-199.	1.2	219
171	The natural order of events: How speakers of different languages represent events nonverbally. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9163-9168.	7.1	246
172	Learning to talk in a gesture-rich world: Early communication in Italian vs. American children. First Language, 2008, 28, 164-181.	1.2	143
173	Making children gesture brings out implicit knowledge and leads to learning Journal of Experimental Psychology: General, 2007, 136, 539-550.	2.1	297
174	Young children use their hands to tell their mothers what to say. Developmental Science, 2007, 10, 778-785.	2.4	218
175	Pointing Sets the Stage for Learning Language?and Creating Language. Child Development, 2007, 78, 741-745.	3.0	80
176	Speech-associated gestures, Broca's area, and the human mirror system. Brain and Language, 2007, 101, 260-277.	1.6	259
177	How children make language out of gesture: Morphological structure in gesture systems developed by American and Chinese deaf childrenâ~†. Cognitive Psychology, 2007, 55, 87-135.	2.2	92
178	The Role of Gesture in Learning: Do Children Use Their Hands to Change Their Minds?. Journal of Cognition and Development, 2006, 7, 211-232.	1.3	231
179	Talking and Thinking With Our Hands. Current Directions in Psychological Science, 2006, 15, 34-39.	5.3	76
180	The importance of gesture in children's spatial reasoning Developmental Psychology, 2006, 42, 1259-1268.	1.6	204

#	Article	IF	CITATIONS
181	The Seeds of Spatial Grammar in the Manual Modality. Cognitive Science, 2005, 29, 1029-1043.	1.7	35
182	Expressing generic concepts with and without a language model. Cognition, 2005, 96, 109-126.	2.2	73
183	Gesture is at the cutting edge of early language development. Cognition, 2005, 96, B101-B113.	2.2	288
184	Do parents lead their children by the hand?. Journal of Child Language, 2005, 32, 481-505.	1.2	71
185	What language creation in the manual modality tells us about the foundations of language. Linguistic Review, 2005, 22, .	0.4	37
186	Watching language grow. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2271-2272.	7.1	24
187	Children Learn When Their Teacher's Gestures and Speech Differ. Psychological Science, 2005, 16, 85-89.	3.3	281
188	Gesture Paves the Way for Language Development. Psychological Science, 2005, 16, 367-371.	3.3	701
189	How our hands help us learn. Trends in Cognitive Sciences, 2005, 9, 234-241.	7.8	259
190	Gesture's Role in the Learning Process. Theory Into Practice, 2004, 43, 314-321.	1.6	44
191	Probing the mental representation of gesture: Is handwaving spatial?. Journal of Memory and Language, 2004, 50, 395-407.	2.1	195
192	From children's hands to adults' ears: Gesture's role in the learning process Developmental Psychology, 2003, 39, 509-520.	1.6	189
193	A Helping Hand in Assessing Children's Knowledge: Instructing Adults to Attend to Gesture. Cognition and Instruction, 2002, 20, 1-26.	2.9	35
194	Constructing communication by hand. Cognitive Development, 2002, 17, 1385-1405.	1.3	47
195	Looking at the hands through time: A microgenetic perspective on learning and instruction. , 2002, , 80-106.		19
196	Thought before language: how deaf and hearing children express motion events across cultures. Cognition, 2002, 85, 145-175.	2.2	117
197	Gesture offers insight into problem-solving in adults and children. Cognitive Science, 2002, 26, 817-831.	1.7	60
198	Gesture offers insight into problem-solving in adults and children. Cognitive Science, 2002, 26, 817-831.	1.7	25

#	Article	IF	CITATIONS
199	How Do Profoundly Deaf Children Learn to Read?. Learning Disabilities Research and Practice, 2001, 16, 222-229.	1.1	153
200	The resilience of gesture in talk: gesture in blind speakers and listeners. Developmental Science, 2001, 4, 416-422.	2.4	100
201	Enacting Stories, Seeing Worlds: Similarities and Differences in the Cross-Cultural Narrative Development of Linguistically Isolated Deaf Children. Human Development, 2001, 44, 311-336.	2.0	80
202	Explaining Math: Gesturing Lightens the Load. Psychological Science, 2001, 12, 516-522.	3.3	600
203	Beyond Words: The Importance of Gesture to Researchers and Learners. Child Development, 2000, 71, 231-239.	3.0	153
204	The Relation Between Gesture and Speech in Congenitally Blind and Sighted Language-Learners. Journal of Nonverbal Behavior, 2000, 24, 105-130.	1.0	59
205	Gesture and the transition from one- to two-word speech: when hand and mouth come together. , 2000, , 235-258.		141
206	The Cultural Bounds of Maternal Accommodation: How Chinese and American Mothers Communicate With Deaf and Hearing Children. Psychological Science, 2000, 11, 307-314.	3.3	45
207	Does the hand reflect implicit knowledge? Yes and no. Behavioral and Brain Sciences, 1999, 22, 766-767.	0.7	10
208	Gestures convey substantive information about a child's thoughts to ordinary listeners. Developmental Science, 1999, 2, 67-74.	2.4	109
209	The role of gesture in communication and thinking. Trends in Cognitive Sciences, 1999, 3, 419-429.	7.8	446
210	Illuminating Mental Representations Through Speech and Gesture. Psychological Science, 1999, 10, 327-333.	3.3	161
211	What the teacher's hands tell the student's mind about math Journal of Educational Psychology, 1999, 91, 720-730.	2.9	176
212	Spontaneous sign systems created by deaf children in two cultures. Nature, 1998, 391, 279-281.	27.8	297
213	Why people gesture when they speak. Nature, 1998, 396, 228-228.	27.8	302
214	Knowledge Conveyed in Gesture Is Not Tied to the Hands. Child Development, 1998, 69, 75.	3.0	52
215	When Gestures and Words Speak Differently. Current Directions in Psychological Science, 1997, 6, 138-143.	5.3	102
216	From Here and Now to There and Then: The Development of Displaced Reference in Homesign and English. Child Development, 1997, 68, 420.	3.0	66

#	Article	IF	CITATIONS
217	Assessing knowledge conveyed in gesture: Do teachers have the upper hand?. Journal of Educational Psychology, 1997, 89, 183-193.	2.9	175
218	From Here and Now to There and Then: The Development of Displaced Reference in Homesign and English. Child Development, 1997, 68, 420-435.	3.0	65
219	Silence is liberating: Removing the handcuffs on grammatical expression in the manual modality Psychological Review, 1996, 103, 34-55.	3.8	210
220	Kanzi: The ape at the brink of the human mind. International Journal of Primatology, 1996, 17, 145-148.	1.9	3
221	The resilience of combinatorial structure at the word level: morphology in self-styled gesture systems. Cognition, 1995, 56, 195-262.	2.2	114
222	Do you have to be right to redescribe?. Behavioral and Brain Sciences, 1994, 17, 718-719.	0.7	17
223	Once Is Not Enough: Standards of Well-Formedness in Manual Communication Created over Three Different Timespans. Language, 1993, 69, 683.	0.6	101
224	Transitions in concept acquisition: Using the hand to read the mind Psychological Review, 1993, 100, 279-297.	3.8	412
225	Transitions in learning: Evidence for simultaneously activated strategies Journal of Experimental Psychology: Human Perception and Performance, 1993, 19, 92-107.	0.9	36
226	Assessing Knowledge Through Gesture: Using Children's Hands to Read Their Minds. Cognition and Instruction, 1992, 9, 201-219.	2.9	139
227	Comprehension and production of gesture in combination with speech in one-word speakers. Journal of Child Language, 1992, 19, 559-580.	1.2	170
228	Displaced communication in a self-styled gesture system: Pointing at the nonpresent. Cognitive Development, 1991, 6, 315-342.	1.3	51
229	Is "innate―another name for "developmentally resilient�. Behavioral and Brain Sciences, 1991, 14, 619-620.	0.7	0
230	Beyond the Input Given: The Child's Role in the Acquisition of Language. Language, 1990, 66, 323.	0.6	212
231	The role of parental input in the development of a morphological system. Journal of Child Language, 1990, 17, 527-563.	1.2	62
232	The effects of learning two languages on levels of metalinguistic awareness. Cognition, 1990, 34, 1-56.	2.2	204
233	Transitional knowledge in the acquisition of concepts. Cognitive Development, 1988, 3, 359-400.	1.3	352
234	The mismatch between gesture and speech as an index of transitional knowledge. Cognition, 1986, 23, 43-71.	2.2	569

#	Article	IF	CITATIONS
235	Gestural Communication in Deaf Children: The Effects and Noneffects of Parental Input on Early Language Development. Monographs of the Society for Research in Child Development, 1984, 49, 1.	6.8	281
236	Language in the two-year old. Cognition, 1976, 4, 189-202.	2.2	262
237	6. Homesign: When gesture is called upon to be language. , 0, , .		2
238	49. How our gestures help us learn. , 0, , .		2
239	Developmental Trajectories of Early Higherâ€Order Thinking Talk Differ for Typically Developing Children and Children With Unilateral Brain Injuries. Mind, Brain, and Education, 0, , .	1.9	0