Anna DerÄgowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/169409/publications.pdf

Version: 2024-02-01

		933264	839398
19	509	10	18
papers	citations	h-index	g-index
19	19	19	951
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Identification of a Novel Fucosidosis-Associated FUCA1 Mutation: A Case of a 5-Year-Old Polish Girl with Two Additional Rare Chromosomal Aberrations and Affected DNA Methylation Patterns. Genes, 2021, 12, 74.	1.0	3
2	RAP1/TERF2IPâ€"A Multifunctional Player in Cancer Development. Cancers, 2021, 13, 5970.	1.7	17
3	Differential Regulation of Telomeric Complex by BCR-ABL1 Kinase in Human Cellular Models of Chronic Myeloid Leukemia—From Single Cell Analysis to Next-Generation Sequencing. Genes, 2020, 11, 1145.	1.0	10
4	In vitro exposure to thiacloprid-based insecticide formulation promotes oxidative stress, apoptosis and genetic instability in bovine lymphocytes. Toxicology in Vitro, 2019, 61, 104654.	1.1	24
5	c-Myc activation promotes cofilin-mediated F-actin cytoskeleton remodeling and telomere homeostasis as a response to oxidant-based DNA damage in medulloblastoma cells. Redox Biology, 2019, 24, 101163.	3.9	13
6	Reduced levels of methyltransferase DNMT2 sensitize human fibroblasts to oxidative stress and DNA damage that is accompanied by changes in proliferation-related miRNA expression. Redox Biology, 2018, 14, 20-34.	3.9	63
7	The Role of Shelterin Complex and Post-Translational Non-Enzymatic Modification in Telomere Maintenance in Chronic Myeloid Leukemia. Blood, 2018, 132, 5426-5426.	0.6	O
8	Ursolic acid-mediated changes in glycolytic pathway promote cytotoxic autophagy and apoptosis in phenotypically different breast cancer cells. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 800-815.	2.2	84
9	Diosmin-induced senescence, apoptosis and autophagy in breast cancer cells of different p53 status and ERK activity. Toxicology Letters, 2017, 265, 117-130.	0.4	69
10	Sulforaphane-Induced Cell Cycle Arrest and Senescence are accompanied by DNA Hypomethylation and Changes in microRNA Profile in Breast Cancer Cells. Theranostics, 2017, 7, 3461-3477.	4.6	146
11	Relationships between rDNA, Nop1 and Sir complex in biotechnologically relevant distillery yeasts. Archives of Microbiology, 2016, 198, 715-723.	1.0	1
12	Copy number variations of genes involved in stress responses reflect the redox state and DNA damage in brewing yeasts. Cell Stress and Chaperones, 2016, 21, 849-864.	1.2	7
13	Affected chromosome homeostasis and genomic instability of clonal yeast cultures. Current Genetics, 2016, 62, 405-418.	0.8	16
14	Adaptive response to chronic mild ethanol stress involves ROS, sirtuins and changes in chromosome dosage in wine yeasts. Oncotarget, 2016, 7, 29958-29976.	0.8	16
15	Shifts in rDNA levels act as a genome buffer promoting chromosome homeostasis. Cell Cycle, 2015, 14, 3475-3487.	1.3	11
16	Single-cell analysis of aneuploidy events using yeast whole chromosome painting probes (WCPPs). Journal of Microbiological Methods, 2015, 111, 40-49.	0.7	6
17	Genetic profiling of yeast industrial strains using in situ comparative genomic hybridization (CGH). Journal of Biotechnology, 2015, 210, 52-56.	1.9	1
18	Genome-wide array-CGH analysis reveals <i>YRF1</i> gene copy number variation that modulates genetic stability in distillery yeasts. Oncotarget, 2015, 6, 30650-30663.	0.8	14

#	Article	IF	CITATIONS
19	Identification of dermatophyte species using genomic in situ hybridization (GISH). Journal of Microbiological Methods, 2014, 100, 32-41.	0.7	8