Mortaza Aghbashlo

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1693506/mortaza-aghbashlo-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 222
 8,881
 56
 84

 papers
 citations
 h-index
 g-index

 228
 11,340
 8.3
 7.13

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
222	Efficient ethanol production from rice straw through cellulose restructuring and high solids loading fermentation by Mucor indicus. <i>Journal of Cleaner Production</i> , 2022 , 339, 130702	10.3	O
221	Pilot-scale co-processing of lignocellulosic biomass, algae, shellfish waste via thermochemical approach: Recent progress and future directions <i>Bioresource Technology</i> , 2022 , 347, 126687	11	1
220	Bioethanol production from food wastes rich in carbohydrates. <i>Current Opinion in Food Science</i> , 2022 , 43, 71-81	9.8	10
219	Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review. <i>Renewable and Sustainable Energy Reviews</i> , 2022 , 156, 111975	16.2	10
218	Engineered biochar produced through microwave pyrolysis as a fuel additive in biodiesel combustion. <i>Fuel</i> , 2022 , 312, 122839	7.1	2
217	Engineered bacteria for valorizing lignocellulosic biomass into bioethanol. <i>Bioresource Technology</i> , 2022 , 344, 126212	11	5
216	Mapping healthcare waste management research: Past evolution, current challenges, and future perspectives towards a circular economy transition. <i>Journal of Hazardous Materials</i> , 2022 , 422, 126724	12.8	18
215	A comparative study on physicochemical properties, pyrolytic behaviour and kinetic parameters of environmentally harmful aquatic weeds for sustainable shellfish aquaculture. <i>Journal of Hazardous Materials</i> , 2022 , 424, 127329	12.8	1
214	Exergy, economic, and environmental assessment of ethanol dehydration to diesel fuel additive diethyl ether. <i>Fuel</i> , 2022 , 308, 121918	7.1	5
213	Safflower-based biorefinery producing a broad spectrum of biofuels and biochemicals: A life cycle assessment perspective. <i>Science of the Total Environment</i> , 2022 , 802, 149842	10.2	11
212	Production of value-added hydrochar from single-mode microwave hydrothermal carbonization of oil palm waste for de-chlorination of domestic water <i>Science of the Total Environment</i> , 2022 , 154968	10.2	O
211	Biofuel supply chain management in the circular economy transition: An inclusive knowledge map of the field <i>Chemosphere</i> , 2022 , 296, 133968	8.4	2
210	Biomass and organic waste potentials towards implementing circular bioeconomy platforms: A systematic bibliometric analysis. <i>Fuel</i> , 2022 , 318, 123585	7.1	7
209	Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review. <i>Renewable and Sustainable Energy Reviews</i> , 2022 , 161, 112411	16.2	3
208	A comprehensive review on anaerobic fungi applications in biofuels production <i>Science of the Total Environment</i> , 2022 , 154521	10.2	2
207	Biodiesel antioxidants and their impact on the behavior of diesel engines: A comprehensive review. <i>Fuel Processing Technology</i> , 2022 , 232, 107264	7.2	6
206	Sustainable management of municipal solid waste through waste-to-energy technologies <i>Bioresource Technology</i> , 2022 , 355, 127247	11	3

(2021-2022)

205	Exergetic sustainability evaluation of horse manure biomass valorization by microwave pyrolysis. <i>Fuel</i> , 2022 , 323, 124286	7.1	O
204	Machine learning predicts and optimizes hydrothermal liquefaction of biomass. <i>Chemical Engineering Journal</i> , 2022 , 445, 136579	14.7	1
203	To what extent do waste management strategies need adaptation to post-COVID-19?. <i>Science of the Total Environment</i> , 2022 , 837, 155829	10.2	2
202	Production of biochar using sustainable microwave pyrolysis approach 2022 , 323-332		
201	Progress in valorisation of agriculture, aquaculture and shellfish biomass into biochemicals and biomaterials towards sustainable bioeconomy. <i>Chemosphere</i> , 2021 , 291, 133036	8.4	1
200	Managing the hazardous waste cooking oil by conversion into bioenergy through the application of waste-derived green catalysts: A review. <i>Journal of Hazardous Materials</i> , 2021 , 424, 127636	12.8	11
199	Life cycle assessment of bioenergy product systems: a critical review. <i>E-Prime</i> , 2021 , 1, 100015		3
198	A state-of-the-art review on producing engineered biochar from shellfish waste and its application in aquaculture wastewater treatment. <i>Chemosphere</i> , 2021 , 288, 132559	8.4	9
197	Towards smart cities powered by nanogenerators: Bibliometric and machine learningBased analysis. <i>Nano Energy</i> , 2021 , 83, 105844	17.1	11
196	Three pillars of sustainability in the wake of COVID-19: A systematic review and future research agenda for sustainable development. <i>Journal of Cleaner Production</i> , 2021 , 297, 126660	10.3	89
195	Operational modifications of a full-scale experimental vertical flow constructed wetland with effluent recirculation to optimize total nitrogen removal. <i>Journal of Cleaner Production</i> , 2021 , 296, 1265	5 5 8·3	23
194	Oncolytic viruses as a promising therapeutic strategy against the detrimental health impacts of air pollution: The case of glioblastoma multiforme. <i>Seminars in Cancer Biology</i> , 2021 ,	12.7	1
193	The effects of nanoadditives on the performance and emission characteristics of spark-ignition gasoline engines: A critical review with a focus on health impacts. <i>Energy</i> , 2021 , 225, 120259	7.9	16
192	Describing biomass pyrolysis kinetics using a generic hybrid intelligent model: A critical stage in sustainable waste-oriented biorefineries. <i>Renewable Energy</i> , 2021 , 170, 81-91	8.1	18
191	Performance and emission analysis of a dual-fuel engine operating on high natural gas substitution rates ignited by aqueous carbon nanoparticles-laden diesel/biodiesel emulsions. <i>Fuel</i> , 2021 , 294, 12024	67.1	6
190	Machine learning technology in biodiesel research: A review. <i>Progress in Energy and Combustion Science</i> , 2021 , 85, 100904	33.6	84
189	Seed oils of Sisymbrium irio and Sisymbrium sophia as a potential non-edible feedstock for biodiesel production. <i>Biofuels</i> , 2021 , 12, 103-111	2	7
188	Pretreatment of lignocelluloses for enhanced biogas production: A review on influencing mechanisms and the importance of microbial diversity. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 135, 110173	16.2	64

187	Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 135, 110148	16.2	96
186	Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 135, 110204	16.2	94
185	Environmental life cycle assessment of different biorefinery platforms valorizing olive wastes to biofuel, phosphate salts, natural antioxidant, and an oxygenated fuel additive (triacetin). <i>Journal of Cleaner Production</i> , 2021 , 278, 123916	10.3	31
184	A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 135, 110033	16.2	67
183	Exergetic, exergoeconomic, and exergoenvironmental aspects of an industrial-scale molasses-based ethanol production plant. <i>Energy Conversion and Management</i> , 2021 , 227, 113637	10.6	37
182	Recent advances in asphaltene transformation in heavy oil hydroprocessing: Progress, challenges, and future perspectives. <i>Fuel Processing Technology</i> , 2021 , 213, 106681	7.2	8
181	Exergy analysis of a whole-crop safflower biorefinery: A step towards reducing agricultural wastes in a sustainable manner. <i>Journal of Environmental Management</i> , 2021 , 279, 111822	7.9	25
180	Towards upscaling microbial desalination cell technology: A comprehensive review on current challenges and future prospects. <i>Journal of Cleaner Production</i> , 2021 , 288, 125597	10.3	16
179	Soft computing-based modeling and emission control/reduction of a diesel engine fueled with carbon nanoparticle-dosed water/diesel ?emulsion fuel. <i>Journal of Hazardous Materials</i> , 2021 , 407, 124.	3 63 .8	24
178	Emerging challenges of air pollution and particulate matter in China, India, and Pakistan and mitigating solutions. <i>Journal of Hazardous Materials</i> , 2021 , 416, 125851	12.8	10
177	Exergetic, economic, and environmental life cycle assessment analyses of a heavy-duty tractor diesel engine fueled with dieselBiodiesel-bioethanol blends. <i>Energy Conversion and Management</i> ,		O
	2021 , 241, 114300	10.6	9
176	2021, 241, 114300 Improving sustainability and mitigating environmental impacts of agro-biowaste compost fertilizer by pelletizing-drying. <i>Environmental Pollution</i> , 2021, 285, 117412	9.3	5
176 175	Improving sustainability and mitigating environmental impacts of agro-biowaste compost fertilizer		5
	Improving sustainability and mitigating environmental impacts of agro-biowaste compost fertilizer by pelletizing-drying. <i>Environmental Pollution</i> , 2021 , 285, 117412 Sustainability assessment of sugarcane residues valorization to biobutadiene by exergy and	9.3	5
175	Improving sustainability and mitigating environmental impacts of agro-biowaste compost fertilizer by pelletizing-drying. <i>Environmental Pollution</i> , 2021 , 285, 117412 Sustainability assessment of sugarcane residues valorization to biobutadiene by exergy and exergoeconomic evaluation. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 147, 111214 Exergy intensity and environmental consequences of the medical face masks curtailing the	9.3	5
175 174	Improving sustainability and mitigating environmental impacts of agro-biowaste compost fertilizer by pelletizing-drying. <i>Environmental Pollution</i> , 2021 , 285, 117412 Sustainability assessment of sugarcane residues valorization to biobutadiene by exergy and exergoeconomic evaluation. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 147, 111214 Exergy intensity and environmental consequences of the medical face masks curtailing the COVID-19 pandemic: Malign bodyguard?. <i>Journal of Cleaner Production</i> , 2021 , 313, 127880 Two decades of research on waste management in the circular economy: Insights from bibliometric,	9.3	56728
175 174 173	Improving sustainability and mitigating environmental impacts of agro-biowaste compost fertilizer by pelletizing-drying. <i>Environmental Pollution</i> , 2021 , 285, 117412 Sustainability assessment of sugarcane residues valorization to biobutadiene by exergy and exergoeconomic evaluation. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 147, 111214 Exergy intensity and environmental consequences of the medical face masks curtailing the COVID-19 pandemic: Malign bodyguard?. <i>Journal of Cleaner Production</i> , 2021 , 313, 127880 Two decades of research on waste management in the circular economy: Insights from bibliometric, text mining, and content analyses. <i>Journal of Cleaner Production</i> , 2021 , 314, 128009 Net-zero exergoeconomic and exergoenvironmental building as new concepts for developing	9.3 16.2 10.3	56728

(2020-2021)

169	Exergetic performance evaluation of a diesel engine powered by diesel/biodiesel mixtures containing oxygenated additive ethylene glycol diacetate. <i>Science of the Total Environment</i> , 2021 , 792, 148435	10.2	4
168	Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 151, 111645	16.2	5
167	Metabolic Engineering of Microalgae for Biofuel Production. <i>Methods in Molecular Biology</i> , 2020 , 1980, 153-172	1.4	11
166	Life-Cycle Assessment (LCA) Analysis of Algal Fuels. <i>Methods in Molecular Biology</i> , 2020 , 1980, 121-151	1.4	O
165	A comprehensive review of engineered biochar: Production, characteristics, and environmental applications. <i>Journal of Cleaner Production</i> , 2020 , 270, 122462	10.3	97
164	Integrated sustainability analysis of combustion engines (ISACE) as an alternative to classical combustion analysis. <i>Renewable and Sustainable Energy Reviews</i> , 2020 , 131, 109981	16.2	5
163	Advancement in valorization technologies to improve utilization of bio-based waste in bioeconomy context. <i>Renewable and Sustainable Energy Reviews</i> , 2020 , 131, 109965	16.2	27
162	A new systematic decision support framework based on solar extended exergy accounting performance to prioritize photovoltaic sites. <i>Journal of Cleaner Production</i> , 2020 , 256, 120356	10.3	6
161	Energy saving in a convective dryer by using novel real-time exergy-based control schemes adjusting exhaust air recirculation. <i>Journal of Cleaner Production</i> , 2020 , 257, 120394	10.3	14
160	Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions. <i>Chemical Engineering Journal</i> , 2020 , 389, 124401	14.7	254
159	Consolidating emission indices of a diesel engine powered by carbon nanoparticle-doped diesel/biodiesel emulsion fuels using life cycle assessment framework. <i>Fuel</i> , 2020 , 267, 117296	7.1	19
158	Determining key issues in life-cycle assessment of waste biorefineries 2020 , 515-555		2
157	A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels. <i>Energy Conversion and Management</i> , 2020 , 212, 112792	10.6	142
156	Fungal Biocontrol Agents as a New Source for Bioethanol Production. Fungal Biology, 2020, 69-104	2.3	1
155	Bioethanol Production by Using Plant-Pathogenic Fungi. Fungal Biology, 2020, 15-38	2.3	2
154	Fungi as Bioreactors for Biodiesel Production. <i>Fungal Biology</i> , 2020 , 39-67	2.3	2
153	Anaerobic Rumen Fungi for Biofuel Production. <i>Fungal Biology</i> , 2020 , 149-175	2.3	3
152	The critical role of advanced sustainability assessment tools in enhancing the real-world application of biofuels. <i>Acta Innovations</i> , 2020 , 67-73	1.1	4

151	Life Cycle Analysis for Biodiesel Production from Oleaginous Fungi. Fungal Biology, 2020, 199-225	2.3	1
150	Algae-Powered Buildings: A Strategy to Mitigate Climate Change and Move Toward Circular Economy. <i>Modeling and Optimization in Science and Technologies</i> , 2020 , 353-365	0.6	1
149	Biofuels: Types, Promises, Challenges, and Role of Fungi. Fungal Biology, 2020, 1-14	2.3	3
148	Effects of waste-derived ethylene glycol diacetate as a novel oxygenated additive on performance and emission characteristics of a diesel engine fueled with diesel/biodiesel blends. <i>Energy Conversion and Management</i> , 2020 , 203, 112245	10.6	29
147	Energy flow modeling and life cycle assessment of apple juice production: Recommendations for renewable energies implementation and climate change mitigation. <i>Journal of Cleaner Production</i> , 2020 , 246, 118997	10.3	15
146	Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid. <i>Renewable and Sustainable Energy Reviews</i> , 2020 , 117, 109493	16.2	82
145	Data on environmental analysis of natural antioxidant production from walnut husk by a solar photovoltaic-driven system as a replacement for potentially carcinogenic synthetic antioxidants. <i>Data in Brief</i> , 2020 , 28, 104933	1.2	1
144	Unlocking the potential of walnut husk extract in the production of waste cooking oil-based biodiesel. <i>Renewable and Sustainable Energy Reviews</i> , 2020 , 119, 109588	16.2	17
143	Life cycle assessment analysis of an ultrasound-assisted system converting waste cooking oil into biodiesel. <i>Renewable Energy</i> , 2020 , 151, 1352-1364	8.1	29
142	Determining biomass chemical exergy using a novel hybrid intelligent approach to promote biomass-based biorefineries. <i>Journal of Cleaner Production</i> , 2020 , 277, 124089	10.3	8
141	Conversion of residues from agro-food industry into bioethanol in Iran: An under-valued biofuel additive to phase out MTBE in gasoline. <i>Renewable Energy</i> , 2020 , 145, 699-710	8.1	56
140	A review of the effect of biodiesel on the corrosion behavior of metals/alloys in diesel engines. <i>Energy Sources, Part A: Recovery, Utilization and Environmental Effects</i> , 2020 , 42, 2923-2943	1.6	30
139	Enhancing the exergetic performance of a pilot-scale convective dryer by exhaust air recirculation. <i>Drying Technology</i> , 2020 , 38, 518-533	2.6	20
138	Exergy analysis of a pistachio roasting system. <i>Drying Technology</i> , 2020 , 38, 1565-1583	2.6	9
137	Anaerobic co-digestion of sewage sludge and slaughterhouse waste in existing wastewater digesters. <i>Renewable Energy</i> , 2020 , 145, 2503-2509	8.1	25
136	A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies. <i>Renewable Energy</i> , 2020 , 146, 1204-1220	8.1	112
135	A comprehensive review on recent biological innovations to improve biogas production, Part 2: Mainstream and downstream strategies. <i>Renewable Energy</i> , 2020 , 146, 1392-1407	8.1	85
134	Data supporting consolidating emission indices of a diesel engine powered by carbon nanoparticle-doped diesel/biodiesel emulsion fuels using life cycle assessment framework. <i>Data in Brief</i> , 2020 , 30, 105428	1.2	6

133	Enhanced power generation and desalination rate in a novel quadruple microbial desalination cell with a single desalination chamber. <i>Renewable and Sustainable Energy Reviews</i> , 2020 , 127, 109855	16.2	22
132	Engineered biochar via microwave CO and steam pyrolysis to treat carcinogenic Congo red dye. Journal of Hazardous Materials, 2020 , 395, 122636	12.8	83
131	Multivariable optimization of carbon nanoparticles synthesized from waste facial tissues by artificial neural networks, new material for downstream quenching of quantum dots. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 3156-3165	2.1	9
130	Progress toward improving ethanol production through decreased glycerol generation in Saccharomyces cerevisiae by metabolic and genetic engineering approaches. <i>Renewable and Sustainable Energy Reviews</i> , 2019 , 115, 109353	16.2	25
129	Spatio-temporal solar exergoeconomic and exergoenvironmental maps for photovoltaic systems. Energy Conversion and Management, 2019 , 195, 701-711	10.6	6
128	Shifting fuel feedstock from oil wells to sea: Iran outlook and potential for biofuel production from brown macroalgae (ochrophyta; phaeophyceae). <i>Renewable and Sustainable Energy Reviews</i> , 2019 , 112, 626-642	16.2	39
127	Effect of substituting organic fraction of municipal solid waste with fruit and vegetable wastes on anaerobic digestion. <i>Journal of Material Cycles and Waste Management</i> , 2019 , 21, 1321-1331	3.4	10
126	A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran. <i>Renewable and Sustainable Energy Reviews</i> , 2019 , 111, 571-594	16.2	48
125	Techno-economic comparison of three biodiesel production scenarios enhanced by glycerol supercritical water reforming process. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 17845-17862	6.7	27
124	Exergoeconomic analysis of lactic acid and power cogeneration from sugarcane residues through a biorefinery approach. <i>Renewable Energy</i> , 2019 , 143, 872-889	8.1	40
123	Emissions from urban bus fleets running on biodiesel blends under real-world operating conditions: Implications for designing future case studies. <i>Renewable and Sustainable Energy Reviews</i> , 2019 , 111, 276-292	16.2	26
122	Recent updates on the production and upgrading of bio-crude oil from microalgae. <i>Bioresource Technology Reports</i> , 2019 , 7, 100216	4.1	46
121	Prognostication of lignocellulosic biomass pyrolysis behavior using ANFIS model tuned by PSO algorithm. <i>Fuel</i> , 2019 , 253, 189-198	7.1	46
120	Biopower and biofertilizer production from organic municipal solid waste: An exergoenvironmental analysis. <i>Renewable Energy</i> , 2019 , 143, 64-76	8.1	86
119	Towards a better understanding of energy systems using emergy-based exergoeconoenvironmental analysis. <i>International Journal of Exergy</i> , 2019 , 28, 209	1.2	4
118	Biogas production from food wastes: A review on recent developments and future perspectives. <i>Bioresource Technology Reports</i> , 2019 , 7, 100202	4.1	72
117	Environmental impact assessment of the mechanical shaft work produced in a diesel engine running on diesel/biodiesel blends containing glycerol-derived triacetin. <i>Journal of Cleaner Production</i> , 2019 , 223, 466-486	10.3	42
116	Comprehensive exergoeconomic analysis of a municipal solid waste digestion plant equipped with a biogas genset. <i>Waste Management</i> , 2019 , 87, 485-498	8.6	99

115	Multi-objective exergoeconomic and exergoenvironmental optimization of continuous synthesis of solketal through glycerol ketalization with acetone in the presence of ethanol as co-solvent. <i>Renewable Energy</i> , 2019 , 130, 735-748	8.1	24
114	Multi-objective exergetic and technical optimization of a piezoelectric ultrasonic reactor applied to synthesize biodiesel from waste cooking oil (WCO) using soft computing techniques. <i>Fuel</i> , 2019 , 235, 100-112	7.1	85
113	Reactor technologies for biodiesel production and processing: A review. <i>Progress in Energy and Combustion Science</i> , 2019 , 74, 239-303	33.6	188
112	Effects of aqueous carbon nanoparticles as a novel nanoadditive in water-emulsified diesel/biodiesel blends on performance and emissions parameters of a diesel engine. <i>Energy Conversion and Management</i> , 2019 , 196, 1153-1166	10.6	60
111	A state-of-the-art review on the application of nanomaterials for enhancing biogas production. Journal of Environmental Management, 2019 , 251, 109597	7.9	68
110	Techno-economic aspects of a safflower-based biorefinery plant co-producing bioethanol and biodiesel. <i>Energy Conversion and Management</i> , 2019 , 201, 112184	10.6	40
109	An intelligent machine vision-based smartphone app for beef quality evaluation. <i>Journal of Food Engineering</i> , 2019 , 248, 9-22	6	11
108	Biodiesel Production and Consumption: Life Cycle Assessment (LCA) Approach. <i>Biofuel and Biorefinery Technologies</i> , 2019 , 161-192	1	3
107	Exergy-Based Sustainability Analysis of Biodiesel Production and Combustion Processes. <i>Biofuel and Biorefinery Technologies</i> , 2019 , 193-217	1	4
106	Modeling of a dual fueled diesel engine operated by a novel fuel containing glycerol triacetate additive and biodiesel using artificial neural network tuned by genetic algorithm to reduce engine emissions. <i>Energy</i> , 2019 , 168, 1128-1137	7.9	25
105	A review on beet sugar industry with a focus on implementation of waste-to-energy strategy for power supply. <i>Renewable and Sustainable Energy Reviews</i> , 2019 , 103, 423-442	16.2	86
104	Applications of Nanotechnology and Carbon Nanoparticles in Agriculture 2019 , 247-277		25
103	Optimization of continuous glycerol esterification with acetic acid based on exergoeconomic and exergoenvironmental approaches. <i>Sustainable Production and Consumption</i> , 2019 , 17, 62-73	8.2	5
102	Recent Patents on Biofuels from Microalgae. <i>Green Energy and Technology</i> , 2018 , 291-306	0.6	6
101	Exergoeconomic analysis of a DI diesel engine fueled with diesel/biodiesel (B5) emulsions containing aqueous nano cerium oxide. <i>Energy</i> , 2018 , 149, 967-978	7.9	113
100	Biomass higher heating value (HHV) modeling on the basis of proximate analysis using iterative network-based fuzzy partial least squares coupled with principle component analysis (PCA-INFPLS). <i>Fuel</i> , 2018 , 222, 1-10	7.1	27
99	Exergy-based sustainability analysis of acetins synthesis through continuous esterification of glycerol in acetic acid using Amberlyst 36 as catalyst. <i>Journal of Cleaner Production</i> , 2018 , 183, 1265-12	1 5·3	48
98	Pistachio (Pistachia vera) wastes valorization: Enhancement of biodiesel oxidation stability using hull extracts of different varieties. <i>Journal of Cleaner Production</i> , 2018 , 185, 852-859	10.3	34

(2018-2018)

97	Exergy-based optimization of a continuous reactor applied to produce value-added chemicals from glycerol through esterification with acetic acid. <i>Energy</i> , 2018 , 150, 351-362	7.9	31
96	Waste Management Strategies; the State of the Art. Biofuel and Biorefinery Technologies, 2018, 1-33	1	4
95	Advanced Soft Computing Techniques in Biogas Production Technology. <i>Biofuel and Biorefinery Technologies</i> , 2018 , 387-417	1	2
94	Prominent Parameters in Biogas Production Systems. <i>Biofuel and Biorefinery Technologies</i> , 2018 , 135-1	61	
93	Biogas Production Systems. Biofuel and Biorefinery Technologies, 2018, 95-116	1	7
92	Exergy analysis of a lignocellulosic-based biorefinery annexed to a sugarcane mill for simultaneous lactic acid and electricity production. <i>Energy</i> , 2018 , 149, 623-638	7.9	129
91	Modeling of a single cell micro proton exchange membrane fuel cell by a new hybrid neural network method. <i>Thermal Science and Engineering Progress</i> , 2018 , 7, 8-19	3.6	12
90	On the exergoeconomic and exergoenvironmental evaluation and optimization of biodiesel synthesis from waste cooking oil (WCO) using a low power, high frequency ultrasonic reactor. <i>Energy Conversion and Management</i> , 2018 , 164, 385-398	10.6	113
89	Exergoeconoenvironmental analysis as a new concept for developing thermodynamically, economically, and environmentally sound energy conversion systems. <i>Journal of Cleaner Production</i> , 2018 , 187, 190-204	10.3	63
88	Exergoeconomic and exergoenvironmental co-optimization of continuous fuel additives (acetins) synthesis from glycerol esterification with acetic acid using Amberlyst 36 catalyst. <i>Energy Conversion and Management</i> , 2018 , 165, 183-194	10.6	57
87	On the exergetic optimization of solketalacetin synthesis as a green fuel additive through ketalization of glycerol-derived monoacetin with acetone. <i>Renewable Energy</i> , 2018 , 126, 242-253	8.1	30
86	Multi-objective exergy-based optimization of continuous glycerol ketalization to synthesize solketal as a biodiesel additive in subcritical acetone. <i>Energy Conversion and Management</i> , 2018 , 160, 251-261	10.6	23
85	Performance assessment of a wind power plant using standard exergy and extended exergy accounting (EEA) approaches. <i>Journal of Cleaner Production</i> , 2018 , 171, 127-136	10.3	62
84	A comprehensive review on the environmental impacts of diesel/biodiesel additives. <i>Energy Conversion and Management</i> , 2018 , 174, 579-614	10.6	191
83	Artificial Neural Network-Based Modeling and Controlling of Drying Systems 2018, 155-172		2
82	Biodiesel from Microalgae. Energy, Environment, and Sustainability, 2018, 277-318	0.8	8
81	Consolidating exergoeconomic and exergoenvironmental analyses using the emergy concept for better understanding energy conversion systems. <i>Journal of Cleaner Production</i> , 2018 , 172, 696-708	10.3	60
80	Potential of Acid-Activated Bentonite and SO3H-Functionalized MWCNTs for Biodiesel Production From Residual Olive Oil Under Biorefinery Scheme. <i>Frontiers in Energy Research</i> , 2018 , 6,	3.8	28

79	Exergetic performance assessment of a long-life milk processing plant: a comprehensive survey. Journal of Cleaner Production, 2017 , 140, 590-607	10.3	35
78	Exergy analysis of an industrial-scale ultrafiltrated (UF) cheese production plant: a detailed survey. Heat and Mass Transfer, 2017 , 53, 407-424	2.2	21
77	A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization. <i>Renewable and Sustainable Energy Reviews</i> , 2017 , 72, 445-464	16.2	292
76	Design of an integrated process for simultaneous chemical looping hydrogen production and electricity generation with CO 2 capture. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 8486-8496	6.7	52
75	Exergetic performance analysis of an ice-cream manufacturing plant: A comprehensive survey. <i>Energy</i> , 2017 , 123, 445-459	7.9	37
74	Fuzzy modeling and optimization of the synthesis of biodiesel from waste cooking oil (WCO) by a low power, high frequency piezo-ultrasonic reactor. <i>Energy</i> , 2017 , 132, 65-78	7.9	79
73	A novel emulsion fuel containing aqueous nano cerium oxide additive in dieselbiodiesel blends to improve diesel engines performance and reduce exhaust emissions: Part I Experimental analysis. <i>Fuel</i> , 2017 , 207, 741-750	7.1	105
7 ²	Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review. <i>Renewable and Sustainable Energy Reviews</i> , 2017 , 79, 414-439	16.2	161
71	Neat diesel beats waste-oriented biodiesel from the exergoeconomic and exergoenvironmental point of views. <i>Energy Conversion and Management</i> , 2017 , 148, 1-15	10.6	112
70	A novel emulsion fuel containing aqueous nano cerium oxide additive in dieselBiodiesel blends to improve diesel engines performance and reduce exhaust emissions: Part II Exergetic analysis. <i>Fuel</i> , 2017, 205, 262-271	7.1	85
69	Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. <i>Progress in Energy and Combustion Science</i> , 2017 , 59, 32-78	33.6	237
68	Multi-objective exergy-based optimization of a continuous photobioreactor applied to produce hydrogen using a novel combination of soft computing techniques. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 8518-8529	6.7	19
67	Comprehensive exergy analysis of a gas engine-equipped anaerobic digestion plant producing electricity and biofertilizer from organic fraction of municipal solid waste. <i>Energy Conversion and Management</i> , 2017 , 151, 753-763	10.6	97
66	Estimation of biomass higher heating value (HHV) based on the proximate analysis by using iterative neural network-adapted partial least squares (INNPLS). <i>Energy</i> , 2017 , 138, 473-479	7.9	38
65	Exergy-based sustainability analysis of a low power, high frequency piezo-based ultrasound reactor for rapid biodiesel production. <i>Energy Conversion and Management</i> , 2017 , 148, 759-769	10.6	50
64	Application of exergy analysis to the dairy industry: A case study of yogurt drink production plant. <i>Food and Bioproducts Processing</i> , 2017 , 101, 118-131	4.9	15
63	Enhanced oil recovery and lignocellulosic quality from oil palm biomass using combined pretreatment with compressed water and steam. <i>Journal of Cleaner Production</i> , 2017 , 142, 3834-3849	10.3	17
62	Mathematical modeling of drying behavior of single emulsion droplets containing functional oil. <i>Food and Bioproducts Processing</i> , 2017 , 101, 100-109	4.9	9

Effect of phosphate concentration on exergetic-based sustainability parameters of glucose fermentation by Ethanolic Mucor indicus. <i>Sustainable Production and Consumption</i> , 2017 , 9, 28-36	8.2	11
Microencapsulation of walnut oil by spray drying: Effects of wall material and drying conditions on physicochemical properties of microcapsules. <i>Innovative Food Science and Emerging Technologies</i> , 2017 , 39, 101-112	6.8	106
Exergetic simulation of a combined infrared-convective drying process. <i>Heat and Mass Transfer</i> , 2016 , 52, 829-844	2.2	28
Multi-objective exergetic optimization of continuous photo-biohydrogen production process using a novel hybrid fuzzy clustering-ranking approach coupled with Radial Basis Function (RBF) neural network. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 18418-18430	6.7	18
Exact estimation of biodiesel cetane number (CN) from its fatty acid methyl esters (FAMEs) profile using partial least square (PLS) adapted by artificial neural network (ANN). <i>Energy Conversion and Management</i> , 2016 , 124, 389-398	10.6	74
Drying behavior and locking point of single droplets containing functional oil. <i>Advanced Powder Technology</i> , 2016 , 27, 1750-1760	4.6	16
Comprehensive exergy analysis of a commercial tomato paste plant with a double-effect evaporator. <i>Energy</i> , 2016 , 111, 910-922	7.9	29
An exergetically-sustainable operational condition of a photo-biohydrogen production system optimized using conventional and innovative fuzzy techniques. <i>Renewable Energy</i> , 2016 , 94, 605-618	8.1	14
Sustainability assessment of photobiological hydrogen production using anaerobic bacteria (Rhodospirillum rubrum) via exergy concept: Effect of substrate concentrations. <i>Environmental Progress and Sustainable Energy</i> , 2016 , 35, 1166-1176	2.5	18
Improving exergetic performance parameters of a rotating-tray air dryer via a simple heat exchanger. <i>Applied Thermal Engineering</i> , 2016 , 94, 13-23	5.8	45
Exergy analysis for decision making on operational condition of a continuous photobioreactor for hydrogen production via WGS reaction. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 2354-2366	6.7	29
On the exergetic optimization of continuous photobiological hydrogen production using hybrid ANFISNSGA-II (adaptive neuro-fuzzy inference systemBon-dominated sorting genetic algorithm-II). <i>Energy</i> , 2016 , 96, 507-520	7.9	20
Exergy-based sustainability assessment of ethanol production via Mucor indicus from fructose, glucose, sucrose, and molasses. <i>Energy</i> , 2016 , 98, 240-252	7.9	31
Effect of an emission-reducing soluble hybrid nanocatalyst in diesel/biodiesel blends on exergetic performance of a DI diesel engine. <i>Renewable Energy</i> , 2016 , 93, 353-368	8.1	81
Exergy-based performance analysis of a continuous stirred bioreactor for ethanol and acetate fermentation from syngas via Wood[ijungdahl pathway. <i>Chemical Engineering Science</i> , 2016 , 143, 36-46	4.4	25
The use of ELM-WT (extreme learning machine with wavelet transform algorithm) to predict exergetic performance of a DI diesel engine running on diesel/biodiesel blends containing polymer waste. <i>Energy</i> , 2016 , 94, 443-456	7.9	45
Support vector machine-based exergetic modelling of a DI diesel engine running on biodieselliesel blends containing expanded polystyrene. <i>Applied Thermal Engineering</i> , 2016 , 94, 727-74	7 5.8	43
Performance analysis of a continuous bioreactor for ethanol and acetate synthesis from syngas via Clostridium ljungdahlii using exergy concept. <i>Clean Technologies and Environmental Policy</i> , 2016 , 18, 853	s- 8 85	14
	fermentation by Ethanolic Mucor indicus. <i>Sustainable Production and Consumption,</i> 2017 , <i>9</i> , 28-36 Microencapsulation of walnut oil by spray drying: Effects of wall material and drying conditions on physicochemical properties of microcapsules. <i>Innovative Food Science and Emerging Technologies,</i> 2017 , <i>39</i> , 101-112 Exergetic simulation of a combined infrared-convective drying process. <i>Heat and Mass Transfer,</i> 2016 , <i>52</i> , 829-844 Multi-objective exergetic optimization of continuous photo-biohydrogen production process using a novel hybrid fuzzy clustering-ranking approach coupled with Radial Basis Function (RBF) neural network. <i>International Journal of Hydrogen Energy,</i> 2016 , 41, 18418-18430 Exact estimation of biodiesel cetane number (CN) from its fatty acid methyl esters (FAMEs) profile using partial least square (PLS) adapted by artificial neural network (ANN). <i>Energy Conversion and Management,</i> 2016 , 124, 389-398 Drying behavior and locking point of single droplets containing functional oil. <i>Advanced Powder Technology,</i> 2016 , 27, 1750-1760 Comprehensive exergy analysis of a commercial tomato paste plant with a double-effect evaporator. <i>Energy,</i> 2016 , 111, 910-922 An exergetically-sustainable operational condition of a photo-biohydrogen production system optimized using conventional and innovative fuzzy techniques. <i>Renewable Energy,</i> 2016 , 94, 605-618 Sustainability assessment of photobiological hydrogen production using anaerobic bacteria (Rhodospirillum rubrum) via exergy concept: Effect of substrate concentrations. <i>Environmental Progress and Sustainable Energy,</i> 2016 , 35, 1166-1176 Improving exergetic performance parameters of a rotating-tray air dryer via a simple heat exchanger. <i>Applied Thermal Engineering,</i> 2016 , 94, 13-23 Exergy analysis for decision making on operational condition of a continuous photobioreactor for hydrogen production via WGS reaction. <i>International Journal of Hydrogen Energy,</i> 2016 , 41, 2354-2366 On the exergetic optimization of continuous	Microencapsulation of walnut oil by spray drying: Effects of wall material and drying conditions on physicochemical properties of microcapsules. Innovative Faod Science and Emerging Technologies. 2017, 39, 101-112 Exergetic simulation of a combined infrared-convective drying process. Heat and Mass Transfer, 22016, 52, 829-844 Multi-objective exergetic optimization of continuous photo-biohydrogen production process using a novel hybrid fluzzy clustering-ranking approach coupled with Radial Basis Function (RBF) neural network. International Journal of Hydrogen Energy, 2016, 41, 18418-18430 Exact estimation of biodiesel cetane number (CN) from its fatty acid methyl esters (FAMEs) profile using partial least square (PLS) adapted by artificial neural network (ANN). Energy Conversion and Management, 2016, 124, 389-398 Drying behavior and locking point of single droplets containing functional oil. Advanced Powder Technology, 2016, 27, 1750-1760 Comprehensive exergy analysis of a commercial tomato paste plant with a double-effect evaporator. Energy, 2016, 111, 910-922 An exergetically-sustainable operational condition of a photo-biohydrogen production system optimized using conventional and innovative fuzzy techniques. Renewable Energy, 2016, 94, 605-618 Sustainability assessment of photobiological hydrogen production using anaerobic bacteria (Rhodospirillum rubrum) via exergy concept: Effect of substrate concentrations. Environmental Progress and Sustainable Energy, 2016, 35, 1166-1176 Improving exergetic peptimization of continuous photobiological hydrogen production via WGS reaction. International Journal of Hydrogen Energy, 2016, 41, 2354-2366 67 On the exergetic optimization of continuous photobiological hydrogen production using hybrid ANFISB/SCALI (adaptive neuro-fuzzy inference systemBon-dominated sorting genetic algorithm-II). Energy, 2016, 96, 507-520 Exergy-based sustainability assessment of ethanol production via Mucor indicus from fructose, glucose, sucrose, and molasses. Energy, 2016, 98, 240-

43	Biodiesel: hopes and dreads. Biofuel Research Journal, 2016, 3, 379-379	13.9	38
42	Development and evaluation of a novel low power, high frequency piezoelectric-based ultrasonic reactor for intensifying the transesterification reaction. <i>Biofuel Research Journal</i> , 2016 , 3, 528-535	13.9	17
41	Exergy Analysis as a Tool for Decision Making on Substrate Concentration and Light Intensity in Photobiological Hydrogen Production. <i>Energy Technology</i> , 2016 , 4, 429-440	3.5	16
40	Using exergy to analyse the sustainability of fermentative ethanol and acetate production from syngas via anaerobic bacteria (Clostridium ljungdahlii). <i>Sustainable Energy Technologies and Assessments</i> , 2016 , 15, 11-19	4.7	19
39	Sustainability evaluation of pasteurized milk production with a life cycle assessment approach: An Iranian case study. <i>Science of the Total Environment</i> , 2016 , 562, 614-627	10.2	28
38	Exergy-based sustainability assessment of continuous photobiological hydrogen production using anaerobic bacterium Rhodospirillum rubrum. <i>Journal of Cleaner Production</i> , 2016 , 139, 157-166	10.3	33
37	Application of Artificial Neural Networks (ANNs) in Drying Technology: A Comprehensive Review. <i>Drying Technology</i> , 2015 , 33, 1397-1462	2.6	119
36	Thermodynamic evaluation of a photobioreactor for hydrogen production from syngas via a locally isolated Rhodopseudomonas palustris PT. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 14246-14	256	20
35	Exergy analysis of biohydrogen production from various carbon sources via anaerobic photosynthetic bacteria (Rhodospirillum rubrum). <i>Energy</i> , 2015 , 93, 730-739	7.9	26
34	Improving exergetic and sustainability parameters of a DI diesel engine using polymer waste dissolved in biodiesel as a novel diesel additive. <i>Energy Conversion and Management</i> , 2015 , 105, 328-337	, 10.6	103
33	Comprehensive exergy analysis of an industrial-scale yogurt production plant. <i>Energy</i> , 2015 , 93, 1832-18	8 5 .5	51
32	Modeling and Simulation of Deep-Bed Solar Greenhouse Drying of Chamomile Flowers. <i>Drying Technology</i> , 2015 , 33, 684-695	2.6	17
31	Continuous real-time monitoring and neural network modeling of apple slices color changes during hot air drying. <i>Food and Bioproducts Processing</i> , 2015 , 94, 263-274	4.9	73
20			
30	Computer Vision System (CVS) for In-Line Monitoring of Visual Texture Kinetics During Shrimp (Penaeus Spp.) Drying. <i>Drying Technology</i> , 2015 , 33, 238-254	2.6	13
29		2.6	7
	(Penaeus Spp.) Drying. <i>Drying Technology</i> , 2015 , 33, 238-254 A proposed mathematical model for exergy analysis of an infrared (IR) drying process. <i>International</i>		
29	(Penaeus Spp.) Drying. <i>Drying Technology</i> , 2015 , 33, 238-254 A proposed mathematical model for exergy analysis of an infrared (IR) drying process. <i>International Journal of Exergy</i> , 2015 , 18, 480 Measurement Techniques to Monitor and Control Fluidization Quality in Fluidized Bed Dryers: A	1.2	7

(2010-2014)

25	Electronic nose and electronic mucosa as innovative instruments for real-time monitoring of food dryers. <i>Trends in Food Science and Technology</i> , 2014 , 38, 158-166	15.3	44
24	Fish oil microencapsulation as influenced by spray dryer operational variables. <i>International Journal of Food Science and Technology</i> , 2013 , 48, 1707-1713	3.8	43
23	An artificial neural network for predicting the physiochemical properties of fish oil microcapsules obtained by spray drying. <i>Food Science and Biotechnology</i> , 2013 , 22, 677-685	3	15
22	Influence of Wall Material and Inlet Drying Air Temperature on the Microencapsulation of Fish Oil by Spray Drying. <i>Food and Bioprocess Technology</i> , 2013 , 6, 1561-1569	5.1	123
21	A review on exergy analysis of drying processes and systems. <i>Renewable and Sustainable Energy Reviews</i> , 2013 , 22, 1-22	16.2	145
20	Application of computer vision technique for on-line monitoring of shrimp color changes during drying. <i>Journal of Food Engineering</i> , 2013 , 115, 99-114	6	67
19	Exergetic performance assessment of plug flow fluidised bed drying process of rough rice. <i>International Journal of Exergy</i> , 2013 , 13, 387	1.2	53
18	Energy and exergy analyses of the spray drying process of fish oil microencapsulation. <i>Biosystems Engineering</i> , 2012 , 111, 229-241	4.8	110
17	Optimization of emulsification procedure for mutual maximizing the encapsulation and exergy efficiencies of fish oil microencapsulation. <i>Powder Technology</i> , 2012 , 225, 107-117	5.2	70
16	The correlation of wall material composition with flow characteristics and encapsulation behavior of fish oil emulsion. <i>Food Research International</i> , 2012 , 49, 379-388	7	76
15	The use of artificial neural network to predict exergetic performance of spray drying process: A preliminary study. <i>Computers and Electronics in Agriculture</i> , 2012 , 88, 32-43	6.5	53
14	Integrated optimization of fish oil microencapsulation process by spray drying. <i>Journal of Microencapsulation</i> , 2012 , 29, 790-804	3.4	25
13	Influence of spray dryer parameters on exergetic performance of microencapsulation processs. <i>International Journal of Exergy</i> , 2012 , 10, 267	1.2	33
12	Optimization of an Artificial Neural Network Topology for Predicting Drying Kinetics of Carrot Cubes Using Combined Response Surface and Genetic Algorithm. <i>Drying Technology</i> , 2011 , 29, 770-779	2.6	34
11	Optimization of an artificial neural network topology using coupled response surface methodology and genetic algorithm for fluidized bed drying. <i>Computers and Electronics in Agriculture</i> , 2011 , 75, 84-91	6.5	61
10	Prediction of carrot cubes drying kinetics during fluidized bed drying by artificial neural network. Journal of Food Science and Technology, 2011 , 48, 542-50	3.3	21
9	Prediction of Energy and Exergy of Carrot Cubes in a Fluidized Bed Dryer by Artificial Neural Networks. <i>Drying Technology</i> , 2011 , 29, 295-307	2.6	39
8	Modeling of Thin-Layer Drying of Apple Slices in a Semi-Industrial Continuous Band Dryer. International Journal of Food Engineering, 2010, 6,	1.9	10

7	Thermodynamic analysis of fluidized bed drying of carrot cubes. <i>Energy</i> , 2010 , 35, 4679-4684	7.9	75
6	Modeling of thin-layer drying of potato slices in length of continuous band dryer. <i>Energy Conversion and Management</i> , 2009 , 50, 1348-1355	10.6	63
5	EVALUATION OF THIN-LAYER DRYING MODELS FOR DESCRIBING DRYING KINETICS OF BARBERRIES (BARBERRIES VULGARIS). <i>Journal of Food Process Engineering</i> , 2009 , 32, 278-293	2.4	12
4	DRYING AND REHYDRATION CHARACTERISTICS OF SOUR CHERRY (PRUNUS CERASUS L.). <i>Journal of Food Processing and Preservation</i> , 2009 , 34, 351-365	2.1	31
3	Performance analysis of drying of carrot slices in a semi-industrial continuous band dryer. <i>Journal of Food Engineering</i> , 2009 , 91, 99-108	6	53
2	Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae). <i>Energy Conversion and Management</i> , 2008 , 49, 2865-2871	10.6	217
1	Energy and Exergy Analyses of Thin-Layer Drying of Potato Slices in a Semi-Industrial Continuous Band Dryer. <i>Drying Technology</i> , 2008 , 26, 1501-1508	2.6	78