Marcio Dorn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1693453/publications.pdf

Version: 2024-02-01

623188 580395 25 70 788 14 citations h-index g-index papers 72 72 72 736 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Feature selection reveal peripheral blood parameter's changes between COVID-19 infections patients from Brazil and Ecuador. Infection, Genetics and Evolution, 2022, 98, 105228.	1.0	4
2	Gene Expression Variation Analysis (GEVA): A new R package to evaluate variations in differential expression in multiple biological conditions. Journal of Biomedical Informatics, 2022, 129, 104053.	2.5	O
3	Evaluation of drug repositioning by molecular docking of pharmaceutical resources available in the Brazilian healthcare system against SARS-CoV-2. Informatics in Medicine Unlocked, 2021, 23, 100539.	1.9	15
4	A Study on Shape-Dependent Settling of Single Particles with Equal Volume Using Surface Resolved Simulations. Computation, 2021, 9, 40.	1.0	9
5	Modifying the catalytic preference of alphaâ€amylase toward <i>n</i> à€alkanes for bioremediation purposes using <i>in silico</i> strategies. Journal of Computational Chemistry, 2021, 42, 1540-1551.	1.5	2
6	Relevance aggregation for neural networks interpretability and knowledge discovery on tabular data. Information Sciences, 2021, 559, 111-129.	4.0	18
7	Comparison of machine learning techniques to handle imbalanced COVID-19 CBC datasets. PeerJ Computer Science, 2021, 7, e670.	2.7	10
8	Benchmarking and Testing Machine Learning Approaches with BARRA:CuRDa, a Curated RNA-Seq Database for Cancer Research. Journal of Computational Biology, 2021, 28, 931-944.	0.8	7
9	Evaluating the Success-History Based Adaptive Differential Evolution in the Protein Structure Prediction Problem. Lecture Notes in Computer Science, 2021, , 194-209.	1.0	O
10	Solving fluid flow domain identification problems with adjoint lattice Boltzmann methods. Computers and Mathematics With Applications, 2020, 79, 17-33.	1.4	3
11	Multi-Objective Differential Evolution Algorithms for the Protein Structure Prediction Problem. , 2020, , .		2
12	Determining the Conformational Flexibility of Disaccharides with an Adaptive Differential Evolution Approach. , 2020, , .		0
13	Multi-Approach Bioinformatics Analysis of Curated Omics Data Provides a Gene Expression Panorama for Multiple Cancer Types. Frontiers in Genetics, 2020, 11, 586602.	1.1	14
14	A multi-population memetic algorithm for the 3-D protein structure prediction problem. Swarm and Evolutionary Computation, 2020, 55, 100677.	4.5	13
15	ConfID: an analytical method for conformational characterization of small molecules using molecular dynamics trajectories. Bioinformatics, 2020, 36, 3576-3577.	1.8	3
16	Exploring the high selectivity of 3-D protein structures using distributed memetic algorithms. Journal of Computational Science, 2020, 41, 101087.	1.5	3
17	The tale of a versatile enzyme: Alpha-amylase evolution, structure, and potential biotechnological applications for the bioremediation of n-alkanes. Chemosphere, 2020, 250, 126202.	4.2	25
18	Hemogram data as a tool for decision-making in COVID-19 management: applications to resource scarcity scenarios. PeerJ, 2020, 8, e9482.	0.9	32

#	Article	IF	Citations
19	Differential Evolution Multi-Objective for Tertiary Protein Structure Prediction. Lecture Notes in Computer Science, 2020, , 165-180.	1.0	1
20	A dynamic evolutionary multi-agent system to predict the 3D structure of proteins., 2020,,.		1
21	A Knowledge Based Self-Adaptive Differential Evolution Algorithm for Protein Structure Prediction. Lecture Notes in Computer Science, 2019, , 87-100.	1.0	7
22	A Self-adaptive Local Search Coordination in Multimeme Memetic Algorithm for Molecular Docking. Lecture Notes in Computer Science, 2019, , 145-159.	1.0	3
23	Development of GROMOS-Compatible Parameter Set for Simulations of Chalcones and Flavonoids. Journal of Physical Chemistry B, 2019, 123, 994-1008.	1.2	7
24	A Multi-objective Swarm-Based Algorithm for the Prediction of Protein Structures. Lecture Notes in Computer Science, 2019, , 101-115.	1.0	4
25	A Biased Random Key Genetic Algorithm with Local Search Chains for Molecular Docking. Lecture Notes in Computer Science, 2019, , 360-376.	1.0	1
26	CuMiDa: An Extensively Curated Microarray Database for Benchmarking and Testing of Machine Learning Approaches in Cancer Research. Journal of Computational Biology, 2019, 26, 376-386.	0.8	46
27	Rosetta Ligand-Protein Docking with Self-Adaptive Differential Evolution. , 2019, , .		1
28	A Memetic Algorithm Based on an NSGA-II Scheme for Phylogenetic Tree Inference. IEEE Transactions on Evolutionary Computation, 2019, 23, 776-787.	7.5	22
29	Neuroevolution as a tool for microarray gene expression pattern identification in cancer research. Journal of Biomedical Informatics, 2019, 89, 122-133.	2.5	27
30	A biased random key genetic algorithm for the protein–ligand docking problem. Soft Computing, 2019, 23, 4155-4176.	2.1	10
31	Everyone Is a Protagonist: Residue Conformational Preferences in High-Resolution Protein Structures. Journal of Computational Biology, 2018, 25, 451-465.	0.8	7
32	A Memetic Algorithm for 3D Protein Structure Prediction Problem. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 690-704.	1.9	24
33	Three-dimensional protein structure prediction based on memetic algorithms. Computers and Operations Research, 2018, 91, 160-177.	2.4	18
34	Understanding the Relationship Between Decision and Objective Space in the Multi-Objective Phylogenetic Inference Problem. , 2018 , , .		4
35	Microarray Classification and Gene Selection with FS-NEAT. , 2018, , .		2
36	Performance Comparison of Multi-Objective Local Search Strategies to Infer Phylogenetic Trees. , 2018, , .		3

#	Article	IF	CITATIONS
37	A Knowledge-Based Artificial Bee Colony Algorithm for the 3-D Protein Structure Prediction Problem. , $2018, \ldots$		2
38	A Genetic Algorithm Based on Restricted Tournament Selection for the 3D-PSP Problem. , 2018, , .		2
39	A multi-objective gene clustering algorithm guided by apriori biological knowledge with intensification and diversification strategies. BioData Mining, 2018, 11, 16.	2.2	17
40	Aromatic Rings Commonly Used in Medicinal Chemistry: Force Fields Comparison and Interactions With Water Toward the Design of New Chemical Entities. Frontiers in Pharmacology, 2018, 9, 395.	1.6	40
41	Perspectives and applications of machine learning for evolutionary developmental biology. Molecular Omics, 2018, 14, 289-306.	1.4	7
42	NEAT-FLEX: Predicting the conformational flexibility of amino acids using neuroevolution of augmenting topologies. Journal of Bioinformatics and Computational Biology, 2017, 15, 1750009.	0.3	5
43	D-BRKGA: A Distributed Biased Random-Key Genetic Algorithm. , 2017, , .		3
44	Using local search strategies to improve the performance of NSGA-II for the Multi-Criteria Minimum Spanning Tree problem. , 2017, , .		1
45	SADE-SPL: A Self-Adapting Differential Evolution algorithm with a loop Structure Pattern Library for the PSP problem. , 2017, , .		7
46	An evolutionary multi-agent algorithm to explore the high degree of selectivity in three-dimensional protein structures. , $2017, \ldots$		2
47	NIAS-Server: Neighbors Influence of Amino acids and Secondary Structures in Proteins. Journal of Computational Biology, 2017, 24, 255-265.	0.8	19
48	Evaluating the use of local search strategies for a memetic algorithm for the protein-ligand docking problem. , 2017, , .		3
49	Multi-Agent Systems in Three-Dimensional Protein Structure Prediction. Advances in Computational Intelligence and Robotics Book Series, 2017, , 241-278.	0.4	3
50	Evaluation of a combined energy fitness function for a distributed memetic algorithm to tackle the 3D protein structure prediction problem. , 2016 , , .		1
51	Predicting protein structural features with NeuroEvolution of Augmenting Topologies. , 2016, , .		0
52	Improving protein tertiary structure prediction with conformational propensities of amino acid residues. , 2016 , , .		1
53	A Memetic Algorithm for Protein Structure Prediction based on Conformational Preferences of Aminoacid Residues. , $2015, , .$		2
54	APL: An angle probability list to improve knowledge-based metaheuristics for the three-dimensional protein structure prediction. Computational Biology and Chemistry, 2015, 59, 142-157.	1,1	38

#	Article	IF	CITATIONS
55	MOIRAE: A computational strategy to extract and represent structural information from experimental protein templates. Soft Computing, 2014, 18, 773-795.	2.1	3
56	Three-dimensional protein structure prediction: Methods and computational strategies. Computational Biology and Chemistry, 2014, 53, 251-276.	1.1	160
57	A cluster-DEE-based strategy to empower protein design. Expert Systems With Applications, 2013, 40, 5210-5218.	4.4	3
58	A molecular dynamics and knowledge-based computational strategy to predict native-like structures of polypeptides. Expert Systems With Applications, 2013, 40, 698-706.	4.4	2
59	A knowledge-based genetic algorithm to predict three-dimensional structures of polypeptides. , 2013, , .		5
60	An interval-based algorithm to represent conformational states of experimentally determined polypeptide templates and fast prediction of approximated 3D protein structures. International Journal of Bioinformatics Research and Applications, 2013, 9, 462.	0.1	1
61	Hardware implementation of GMDH-type artificial neural networks and its use to predict approximate three-dimensional structures of proteins. , 2012, , .		2
62	A GMDH polynomial neural network-based method to predict approximate three-dimensional structures of polypeptides. Expert Systems With Applications, 2012, 39, 12268-12279.	4.4	29
63	Conformational changes in 2-trans-enoyl-ACP (CoA) reductase (InhA) from M. tuberculosis induced by an inorganic complex: a molecular dynamics simulation study. Journal of Molecular Modeling, 2012, 18, 1779-1790.	0.8	12
64	A hybrid genetic algorithm for the 3-D protein structure prediction problem using a path-relinking strategy. , $2011, , .$		8
65	Clustering Nodes in Large-Scale Biological Networks Using External Memory Algorithms. Lecture Notes in Computer Science, 2011, , 375-386.	1.0	12
66	Mining the Protein Data Bank with CReF to predict approximate 3-D structures of polypeptides. International Journal of Data Mining and Bioinformatics, 2010, 4, 281.	0.1	10
67	A3N: An artificial neural network n-gram-based method to approximate 3-D polypeptides structure prediction. Expert Systems With Applications, 2010, 37, 7497-7508.	4.4	13
68	Parallel Verified Linear System Solver for Uncertain Input Data. , 2008, , .		2
69	CReF., 2008,,.		11
70	A Hybrid Method for the Protein Structure Prediction Problem. Lecture Notes in Computer Science, 2008, , 47-56.	1.0	9