
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1693311/publications.pdf Version: 2024-02-01

<u> Stedhan Ι Α̃1/17</u>

#	Article	IF	CITATIONS
1	Biotechnological production of cyclic dinucleotides—Challenges and opportunities. Biotechnology and Bioengineering, 2022, 119, 677-684.	3.3	11
2	Recent Advances in Biocatalysis for Drug Synthesis. Biomedicines, 2022, 10, 964.	3.2	12
3	Cellâ€Free Protein Synthesis for the Screening of Novel Azoreductases and Their Preferred Electron Donor. ChemBioChem, 2022, 23, .	2.6	4
4	Environmental Assessment of Enzyme Production and Purification. Molecules, 2021, 26, 573.	3.8	17
5	Triaging of Culture Conditions for Enhanced Secondary Metabolite Diversity from Different Bacteria. Biomolecules, 2021, 11, 193.	4.0	18
6	A Multi-Enzyme Cascade Reaction for the Production of 2′3′-cGAMP. Biomolecules, 2021, 11, 590.	4.0	18
7	Investigation of Vitamin D ₂ and Vitamin D ₃ Hydroxylation by <i>Kutzneria albida</i> . ChemBioChem, 2021, 22, 2266-2274.	2.6	5
8	Identification and Expression of New Unspecific Peroxygenases – Recent Advances, Challenges and Opportunities. Frontiers in Bioengineering and Biotechnology, 2021, 9, 705630.	4.1	35
9	Recombinant expression and characterization of novel P450s from Actinosynnema mirum. Bioorganic and Medicinal Chemistry, 2021, 42, 116241.	3.0	6
10	From Cell-Free Protein Synthesis to Whole-Cell Biotransformation: Screening and Identification of Novel α-Ketoglutarate-Dependent Dioxygenases for Preparative-Scale Synthesis of Hydroxy-l-Lysine. Catalysts, 2021, 11, 1038.	3.5	9
11	Getting the Most Out of Enzyme Cascades: Strategies to Optimize In Vitro Multi-Enzymatic Reactions. Catalysts, 2021, 11, 1183.	3.5	43
12	Screening and Identification of Novel cGAS Homologues Using a Combination of in Vitro and In Vivo Protein Synthesis. International Journal of Molecular Sciences, 2020, 21, 105.	4.1	18
13	30 Jahre sichere Gentechnik in Deutschland. Angewandte Chemie, 2020, 132, 13772-13773.	2.0	Ο
14	The Development of Biocatalysis as a Tool for Drug Discovery. Chimia, 2020, 74, 368.	0.6	11
15	30 Years of Safe Genetic Engineering in Germany. Angewandte Chemie - International Edition, 2020, 59, 13668-13669.	13.8	0
16	Catalytic Promiscuity of cGAS: A Facile Enzymatic Synthesis of 2′â€3â€²â€Łinked Cyclic Dinucleotides. ChemBioChem, 2020, 21, 3225-3228.	2.6	17
17	A Gram-Scale Limonene Production Process with Engineered Escherichia coli. Molecules, 2020, 25, 1881.	3.8	51
18	Biosynthetic Plasticity Enables Production of Fluorinated Aurachins. ChemBioChem, 2020, 21, 2268-2273.	2.6	13

#	Article	IF	CITATIONS
19	Accessing the Biocatalytic Potential for Câ^'Hâ€Activation by Targeted Genome Mining and Screening. ChemCatChem, 2019, 11, 5766-5777.	3.7	9
20	Recent advances in heme biocatalysis engineering. Biotechnology and Bioengineering, 2019, 116, 3469-3475.	3.3	20
21	Application of Cell-Free Protein Synthesis for Faster Biocatalyst Development. Catalysts, 2019, 9, 190.	3.5	38
22	Recent developments and challenges of biocatalytic processes in the pharmaceutical industry. Current Opinion in Green and Sustainable Chemistry, 2018, 11, 58-64.	5.9	60
23	Biotechnologische Produktion von Monoterpenen in <i>Escherichia coli</i> . Chemie-Ingenieur-Technik, 2018, 90, 1272-1273.	0.8	Ο
24	A novel cytochrome P450 monoâ€oxygenase from <i>Streptomyces platensis</i> resembles activities of human drug metabolizing P450s. Biotechnology and Bioengineering, 2018, 115, 2156-2166.	3.3	17
25	Insights into the Kinetics of the Resistance Formation of Bacteria against Ciprofloxacin Poly(2-methyl-2-oxazoline) Conjugates. Bioconjugate Chemistry, 2018, 29, 2671-2678.	3.6	10
26	Enzyme in der chemischen und pharmazeutischen Industrie. , 2018, , 243-264.		0
27	The First Biocatalytic Carbon–Silicon Bond Formation. Angewandte Chemie - International Edition, 2017, 56, 3140-3141.	13.8	7
28	Draft Genome Sequences of Three <i>Actinobacteria</i> Strains Presenting New Candidate Organisms with High Potentials for Specific P450 Cytochromes. Genome Announcements, 2017, 5, .	0.8	4
29	Die erste biokatalytische Bildung von Kohlenstoff‣iliciumâ€Bindungen. Angewandte Chemie, 2017, 129, 3186-3187.	2.0	2
30	Enzyme-Based Electrobiotechnological Synthesis. Advances in Biochemical Engineering/Biotechnology, 2017, 167, 87-134.	1.1	14
31	Human xanthine oxidase recombinant in E. coli: A whole cell catalyst for preparative drug metabolite synthesis. Journal of Biotechnology, 2016, 235, 3-10.	3.8	13
32	Human FMO2-based microbial whole-cell catalysts for drug metabolite synthesis. Microbial Cell Factories, 2015, 14, 82.	4.0	18
33	Human flavin monooxygenase 2: Heterologous expression in E. coli and API modification. New Biotechnology, 2014, 31, S82.	4.4	0
34	Production of Recombinant Human Aldehyde Oxidase in <i>Escherichia coli</i> and Optimization of Its Application for the Preparative Synthesis of Oxidized Drug Metabolites. ChemCatChem, 2014, 6, 1028-1042.	3.7	10
35	Complementation of Biotransformations with Chemical C–H Oxidation: Copper-Catalyzed Oxidation of Tertiary Amines in Complex Pharmaceuticals. Journal of the American Chemical Society, 2013, 135, 12346-12352.	13.7	60
36	Biocatalysts and Enzyme Technology. 2.â€Auflage. Von Klaus Buchholz, Volker Kasche und Uweâ€Theo Bornscheuer Angewandte Chemie, 2013, 125, 7211-7211.	2.0	0

#	Article	IF	CITATIONS
37	The use of enzymes in organic synthesis and the life sciences: perspectives from the Swiss Industrial Biocatalysis Consortium (SIBC). Catalysis Science and Technology, 2013, 3, 29-40.	4.1	97
38	Expression of recombinant human flavin monooxygenase and moclobemide-N-oxide synthesis on multi-mg scale. Chemical Communications, 2012, 48, 6001.	4.1	37
39	Studies on the enantioselective oxidation of β-ionone with a whole E. coli system expressing cytochrome P450 monooxygenase BM3. Journal of Molecular Catalysis B: Enzymatic, 2012, 84, 62-64.	1.8	10
40	Ionic liquid facilitates biocatalytic conversion of hardly water soluble ketones. Journal of Molecular Catalysis B: Enzymatic, 2011, 68, 147-153.	1.8	31
41	An Efficient Route to Both Enantiomers of <i>allo</i> â€Threonine by Simultaneous Amino Acid Racemaseâ€Catalyzed Isomerization of Threonine and Crystallization. Advanced Synthesis and Catalysis, 2011, 353, 2431-2438.	4.3	10
42	Towards Preparative Scale Steroid Hydroxylation with Cytochrome P450 Monooxygenase CYP106A2. ChemBioChem, 2010, 11, 713-721.	2.6	81
43	Recombinant human cytochrome P450 monooxygenases for drug metabolite synthesis. Biotechnology and Bioengineering, 2010, 106, 699-706.	3.3	89
44	Challenges of steroid biotransformation with human cytochrome P450 monooxygenase CYP21 using resting cells of recombinant Schizosaccharomyces pombe. Journal of Biotechnology, 2010, 146, 179-185.	3.8	49
45	Enzyme-assisted physicochemical enantioseparation processes: Part I. Production and characterization of a recombinant amino acid racemase. Journal of Molecular Catalysis B: Enzymatic, 2009, 58, 10-16.	1.8	18
46	Stable Electroenzymatic Processes by Catalyst Separation. Chemistry - A European Journal, 2009, 15, 4998-5001.	3.3	62
47	Ionic Liquids as Performance Additives for Electroenzymatic Syntheses. Chemistry - A European Journal, 2009, 15, 11692-11700.	3.3	34
48	Metabolomics for biotransformations: Intracellular redox cofactor analysis and enzyme kinetics offer insight into whole cell processes. Biotechnology and Bioengineering, 2009, 104, 251-260.	3.3	22
49	Enzymeâ€assisted physicochemical enantioseparation processes—Part III: Overcoming yield limitations by dynamic kinetic resolution of asparagine via preferential crystallization and enzymatic racemization. Biotechnology and Bioengineering, 2009, 104, 1235-1239.	3.3	34
50	Enzyme-assisted physicochemical enantioseparation processes—Part II: Solid–liquid equilibria, preferential crystallization, chromatography and racemization reaction. Chemical Engineering Science, 2009, 64, 2473-2482.	3.8	21
51	Continuous Biocatalytic Processes. Organic Process Research and Development, 2009, 13, 607-616.	2.7	50
52	A Continuously Operated Bimembrane Reactor Process for the Biocatalytic Production of (2 <i>R</i> ,5 <i>R</i>)-Hexanediol. Organic Process Research and Development, 2009, 13, 1202-1205.	2.7	18
53	Chemo-enzymatic cascade oxidation in supercritical carbon dioxide/water biphasic media. Green Chemistry, 2009, 11, 1052.	9.0	71
54	Application of immobilized bovine enterokinase in repetitive fusion protein cleavage for the production of mucin 1. Biotechnology Journal, 2009, 4, 1610-1618.	3.5	7

#	Article	IF	CITATIONS
55	Immobilisation of bovine enterokinase and application of the immobilised enzyme in fusion protein cleavage. Bioprocess and Biosystems Engineering, 2008, 31, 173-182.	3.4	12
56	Engineered enzymes for chemical production. Biotechnology and Bioengineering, 2008, 101, 647-653.	3.3	144
57	Synthesis, Characterization and Application of New Rhodium Complexes for Indirect Electrochemical Cofactor Regeneration. Advanced Synthesis and Catalysis, 2008, 350, 909-918.	4.3	58
58	Electroenzymatic strategies for deracemization, stereoinversion and asymmetric synthesis of amino acids. Electrochimica Acta, 2008, 53, 3175-3180.	5.2	22
59	Electroenzymatic synthesis. Journal of Molecular Catalysis B: Enzymatic, 2008, 51, 57-72.	1.8	109
60	Continuous asymmetric ketone reduction processes with recombinant Escherichia coli. Journal of Biotechnology, 2007, 132, 438-444.	3.8	57
61	Process Intensification for Substrate-Coupled Whole Cell Ketone Reduction by In Situ Acetone Removal. Organic Process Research and Development, 2007, 11, 836-841.	2.7	38
62	Technische Anwendung von Enzymen: Weiße WÃ s che und Grüne Chemie. Chemie in Unserer Zeit, 2007, 41, 324-333.	0.1	3
63	The production of (R)-2-hydroxy-1-phenyl-propan-1-one derivatives by benzaldehyde lyase fromPseudomonas fluorescensin a continuously operated membrane reactor. Biotechnology and Bioengineering, 2007, 96, 835-843.	3.3	32
64	Process development for the electroenzymatic synthesis of (R)-methylphenylsulfoxide by use of a 3-dimensional electrode. Biotechnology and Bioengineering, 2007, 98, 525-534.	3.3	54
65	Process development for enzyme catalysed asymmetric C–C-bond formation. Chemical Engineering Science, 2007, 62, 5201-5205.	3.8	14
66	Enhancement of the NAD(P)(H) Pool in <i>Escherichia coli</i> for Biotransformation. Engineering in Life Sciences, 2007, 7, 343-353.	3.6	44
67	Biocatalytic ketone reduction—a powerful tool for the production of chiral alcohols—part I: processes with isolated enzymes. Applied Microbiology and Biotechnology, 2007, 76, 237-248.	3.6	301
68	Biocatalytic ketone reduction—a powerful tool for the production of chiral alcohols—part II: whole-cell reductions. Applied Microbiology and Biotechnology, 2007, 76, 249-255.	3.6	207
69	Metabolomics: current state and evolving methodologies and tools. Applied Microbiology and Biotechnology, 2007, 76, 495-511.	3.6	206
70	Electroenzymatic synthesis of chiral alcohols in an aqueous–organic two-phase system. Tetrahedron: Asymmetry, 2007, 18, 1187-1193.	1.8	46
71	Immobilisation of alcohol dehydrogenase from Lactobacillus brevis and its application in a plug-flow reactor. Tetrahedron: Asymmetry, 2006, 17, 3219-3225.	1.8	42
72	Electroenzymatic Synthesis of Chiral Sulfoxides. Engineering in Life Sciences, 2006, 6, 170-174.	3.6	44

#	Article	IF	CITATIONS
73	Biocatalytic production of enantiopure cyclohexane-trans-1,2-diol using extracellular lipases from Bacillus subtilis. Applied Microbiology and Biotechnology, 2006, 72, 1107-1116.	3.6	21
74	Membranes in Biotechnology. Chemical Engineering and Technology, 2006, 29, 1404-1415.	1.5	35
75	Activity and stability of Caldariomyces fumago chloroperoxidase modified by reductive alkylation, amidation and cross-linking. Enzyme and Microbial Technology, 2005, 37, 582-588.	3.2	26
76	Kinetic Modeling of Acetophenone Reduction Catalyzed by Alcohol Dehydrogenase from Thermoanaerobacter sp Biotechnology Letters, 2005, 27, 1087-1095.	2.2	61
77	Indirect electrochemical reduction of nicotinamide coenzymes. Bioelectrochemistry, 2004, 65, 1-7.	4.6	64
78	First asymmetric electroenzymatic oxidation catalyzed by a peroxidase. Electrochemistry Communications, 2004, 6, 583-587.	4.7	73
79	Reaction Technology in Asymmetric Synthesis. , 0, , 415-434.		Ο
80	Basics of Bioreaction Engineering. , 0, , 115-145.		14