
Ben Minnaert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1693293/publications.pdf Version: 2024-02-01

REN MINNAEDT

#	Article	IF	CITATIONS
1	Gain Expressions for Capacitive Wireless Power Transfer with One Electric Field Repeater. Electronics (Switzerland), 2021, 10, 723.	3.1	3
2	Multiple Input Multiple Output Resonant Inductive WPT Link: Optimal Terminations for Efficiency Maximization. Energies, 2021, 14, 2194.	3.1	5
3	Efficiency Angle for Wireless Power Transfer Systems with Multiple Receivers. , 2021, , .		1
4	A Review of the Current State of Technology of Capacitive Wireless Power Transfer. Energies, 2021, 14, 5862.	3.1	35
5	Analysis of Capacitive Wireless Power Transfer SIMO Systems based on the Duality Principle. , 2021, , .		2
6	Efficiency Angle as Figure of Merit for Reciprocal MIMO Networks. , 2021, , .		0
7	General Procedure to Optimize a MIMO Capacitive Wireless Power Transfer System. , 2021, , .		1
8	Multiple Inputs Inductive WPT: Efficiency Analysis by Using a Generalized Eigenvalue Approach. , 2021, , .		0
9	Capacitive Wireless Power Transfer with Multiple Transmitters: Efficiency Optimization. Energies, 2020, 13, 3482.	3.1	7
10	Optimal Terminations for a Single-Input Multiple-Output Resonant Inductive WPT Link. Energies, 2020, 13, 5157.	3.1	9
11	Maximum efficiency solution for capacitive wireless power transfer with <i>N</i> receivers. Wireless Power Transfer, 2020, 7, 65-75.	1.1	6
12	Power maximization for a multiple–input and multiple-output wireless power transfer system described by the admittance matrix. , 2020, , .		2
13	Optimizing the Power Output for a Capacitive Wireless Power Transfer System with \$N\$ receivers. , 2019, , .		5
14	Maximizing the Power Transfer for a Mixed Inductive and Capacitive Wireless Power Transfer System. , 2018, , .		22
15	Coupling-Independent Capacitive Wireless Power Transfer Using Frequency Bifurcation. Energies, 2018, 11, 1912.	3.1	8
16	Challenges for Wireless Power Transfer in Building-Integrated Photovoltaics. , 2018, , .		5
17	Design of a Capacitive Wireless Power Transfer Link with Minimal Receiver Circuitry. , 2018, , .		3
18	Constant capacitive wireless power transfer at variable coupling. , 2018, , .		9

18 Constant capacitive wireless power transfer at variable coupling., 2018,,.

Ben Minnaert

#	Article	IF	CITATIONS
19	Wireless energy transfer by means of inductive coupling for dairy cow health monitoring. Computers and Electronics in Agriculture, 2018, 152, 101-108.	7.7	7
20	Numerical assessment of EMF exposure of a cow to a wireless power transfer system for dairy cattle. Computers and Electronics in Agriculture, 2018, 151, 219-225.	7.7	4
21	Europe and the Future for WPT : European Contributions to Wireless Power Transfer Technology. IEEE Microwave Magazine, 2017, 18, 56-87.	0.8	59
22	Optimal energy storage solution for an inductively powered system for dairy cows. , 2017, , .		5
23	Conjugate image theory for non-symmetric inductive, capacitive and mixed coupling. , 2017, , .		3
24	Single variable expressions for the efficiency of a reciprocal power transfer system. International Journal of Circuit Theory and Applications, 2017, 45, 1418-1430.	2.0	12
25	Conjugate Image Theory Applied on Capacitive Wireless Power Transfer. Energies, 2017, 10, 46.	3.1	28
26	Optimal Analytical Solution for a Capacitive Wireless Power Transfer System with One Transmitter and Two Receivers. Energies, 2017, 10, 1444.	3.1	14
27	The feasibility of wireless power transfer integration in contemporary furniture. , 2016, , .		1
28	Evaluation of the vertical magnetic field generated by a spiral planar coil. , 2015, , .		1
29	Dedicated computational models for the electromagnetic emissions of integrated circuits. , 2015, , .		0
30	An improved algorithm for the creation of homogeneous magnetic field distributions. , 2015, , .		0
31	Experimental characterization methods for the electromagnetic emission of inductive wireless power circuits. , 2015, , .		1
32	A Proposal for Typical Artificial Light Sources for the Characterization of Indoor Photovoltaic Applications. Energies, 2014, 7, 1500-1516.	3.1	135
33	Guidelines for the Bandgap Combinations and Absorption Windows for Organic Tandem and Triple-Junction Solar Cells. Materials, 2012, 5, 1933-1953.	2.9	29
34	Modelling of organic triple-junction solar cells. Proceedings of SPIE, 2012, , .	0.8	1
35	Efficiency simulations of thin film chalcogenide photovoltaic cells for different indoor lighting conditions. Thin Solid Films, 2011, 519, 7537-7540.	1.8	32
36	Simulation of the influence of the absorption window for stacked and monolithic organic tandem solar cells. Solar Energy Materials and Solar Cells, 2010, 94, 1125-1131.	6.2	4

Ben Minnaert

#	Article	IF	CITATIONS
37	The Suitability of Organic Solar Cells for Different Indoor Conditions. Advances in Science and Technology, 2010, 74, 170-175.	0.2	8
38	Empirical study of the characteristics of current-state organic bulk heterojunction solar cells. EPJ Applied Physics, 2007, 38, 111-114.	0.7	14
39	Efficiency potential of organic bulk heterojunction solar cells. Progress in Photovoltaics: Research and Applications, 2007, 15, 741-748.	8.1	57
40	Device Modeling of Nano-Structured Solar Cells. , 2006, , 45-80.		4
41	An effective medium model versus a network model for nanostructured solar cells. Comptes Rendus Chimie, 2006, 9, 735-741.	0.5	12
42	The Potential of Tandem Photovoltaic Solar Cells for Indoor Applications. , 0, , .		4
43	The Theoretical Influence of the Difference Between the LUMO Energy Levels of Donor and Acceptor in Organic Photovoltaic Triplejunction Solar Cells. , 0, , .		0