List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1692817/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bongard and Smirnov on the tetrachromacy of extra-foveal vision. Vision Research, 2022, 195, 107952.	1.4	3
2	What kind of network is the brain?. Trends in Cognitive Sciences, 2022, 26, 312-324.	7.8	3
3	Separation in the visual field has divergent effects on discriminating the speed and the direction of motion. Current Biology, 2020, 30, R1250-R1251.	3.9	1
4	â€~The last channel': vision at the temporal margin of the field. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200607.	2.6	1
5	Cortical communication and the comparison of colors. Current Opinion in Behavioral Sciences, 2019, 30, 203-209.	3.9	2
6	Tetrachromacy: the mysterious case of extra-ordinary color vision. Current Opinion in Behavioral Sciences, 2019, 30, 130-134.	3.9	8
7	Horizontal lines in the MacLeod-Boynton diagram: Saturation discrimination and hue discrimination compared. Journal of Vision, 2019, 19, 7.	0.3	1
8	Syringe labels seen through the eyes of the colour-deficient clinician. British Journal of Anaesthesia, 2018, 121, 1370-1373.	3.4	5
9	Cerebral iconics: how are visual stimuli represented centrally in the human brain?. , 2018, 85, 87-94.	0.0	0
10	General and specific factors in the processing of faces. Vision Research, 2017, 141, 217-227.	1.4	82
11	Individual differences in human eye movements: An oculomotor signature?. Vision Research, 2017, 141, 157-169.	1.4	122
12	An exploratory factor analysis of visual performance in a large population. Vision Research, 2017, 141, 303-316.	1.4	27
13	Individual differences as a window into the structure and function of the visual system. Vision Research, 2017, 141, 1-3.	1.4	6
14	Individual differences in visual science: What can be learned and what is good experimental practice?. Vision Research, 2017, 141, 4-15.	1.4	82
15	The Oxytocin Receptor Gene (<i>OXTR</i>) and Face Recognition. Psychological Science, 2017, 28, 47-55.	3.3	20
16	Homozygous Resistance to Thyroid Hormone β: Can Combined Antithyroid Drug and Triiodothyroacetic Acid Treatment Prevent Cardiac Failure?. Journal of the Endocrine Society, 2017, 1, 1203-1212.	0.2	13
17	The comparison of spatially separated stimuli: judgments of speed. Journal of Vision, 2017, 17, 21.	0.3	0
18	The discrimination of speed when the discriminanda are spatially separated and are moving in the same or in different directions. Journal of Vision, 2017, 17, 46.	0.3	0

#	Article	IF	CITATIONS
19	Superior discrimination for hue than for saturation and an explanation in terms of correlated neural noise. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160164.	2.6	10
20	A new Mooney test. Behavior Research Methods, 2016, 48, 1546-1559.	4.0	7
21	Speed and the coherence of superimposed chromatic gratings. Vision Research, 2016, 122, 66-72.	1.4	0
22	Is discrimination enhanced at a category boundary? The case of unique red. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2016, 33, A260.	1.5	1
23	A population study of binocular function. Vision Research, 2015, 110, 34-50.	1.4	70
24	Suggestive Association With Ocular Phoria at Chromosome 6p22. , 2014, 55, 345.		10
25	Symmetries and asymmetries in chromatic discrimination. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, A247.	1.5	7
26	Counterphase modulation flicker photometry: phenotypic and genotypic associations. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, A226.	1.5	3
27	Counterphase modulation photometry: comparison of two instruments. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, A34.	1.5	4
28	Individual differences provide psychophysical evidence for separate on- and off-pathways deriving from short-wave cones. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, A47.	1.5	13
29	Variants in the 1q21 risk region are associated with a visual endophenotype of autism and schizophrenia. Genes, Brain and Behavior, 2014, 13, 144-151.	2.2	32
30	Is discrimination enhanced at the boundaries of perceptual categories? A negative case. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140367.	2.6	9
31	An online version of the Mooney Face Test: phenotypic and genetic associations. Neuropsychologia, 2014, 63, 19-25.	1.6	24
32	Can spatial resolution reveal individual differences in the L:M cone ratio?. Vision Research, 2013, 78, 26-38.	1.4	13
33	X-linked cone dystrophy and colour vision deficiency arising from a missense mutation in a hybrid L/M cone opsin gene. Vision Research, 2013, 80, 41-50.	1.4	22
34	Genetic association suggests that SMOC1 mediates between prenatal sex hormones and digit ratio. Human Genetics, 2013, 132, 415-421.	3.8	43
35	Compatible and incompatible representations in visual sensory storage. Journal of Vision, 2012, 12, 1-1.	0.3	13
36	Do different â€~magnocellular tasks' probe the same neural substrate?. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4263-4271.	2.6	41

#	Article	IF	CITATIONS
37	Cardinal axes are not independent in color discrimination. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, A157.	1.5	21
38	The Lagerlunda Collision and the Introduction of Color Vision Testing. Survey of Ophthalmology, 2012, 57, 178-194.	4.0	12
39	Kirschmann's Fourth Law. Vision Research, 2012, 53, 40-46.	1.4	13
40	Foveal color perception: Minimal thresholds at a boundary between perceptual categories. Vision Research, 2012, 62, 162-172.	1.4	28
41	Parafoveal color discrimination: A chromaticity locus of enhanced discrimination. Journal of Vision, 2011, 10, 4-4.	0.3	34
42	Vision out of the corner of the eye. Vision Research, 2011, 51, 203-214.	1.4	40
43	The effect of photopigment optical density on the color vision of the anomalous trichromat. Vision Research, 2011, 51, 2224-2233.	1.4	28
44	Integrity of the Cone Photoreceptor Mosaic in Oligocone Trichromacy. , 2011, 52, 4757.		33
45	Is there brief temporal buffering of successive visual inputs?. Quarterly Journal of Experimental Psychology, 2011, 64, 767-791.	1.1	16
46	Is there a general trait of susceptibility to simultaneous contrast?. Vision Research, 2010, 50, 1656-1664.	1.4	25
47	The dimensionality of color vision in carriers of anomalous trichromacy. Journal of Vision, 2010, 10, 12-12.	0.3	79
48	Latency characteristics of the short-wavelength-sensitive cones and their associated pathways. Journal of Vision, 2009, 9, 5-5.	0.3	11
49	The psychophysics of detecting binocular discrepancies of luminance. Vision Research, 2009, 49, 1929-1938.	1.4	40
50	A neural basis for unique hues?. Current Biology, 2009, 19, R441-R442.	3.9	52
51	The symmetry of visual fields in chromatic discrimination. Brain and Cognition, 2009, 69, 39-46.	1.8	13
52	Gregory's 1977 Paper. Perception, 2009, 38, 827-836.	1.2	1
53	Hemifield differences in spatial and colour discriminations and the mechanisms of sensory comparison. International Journal of Psychophysiology, 2008, 69, 139.	1.0	0
54	Relative latencies of cone signals measured by a moving vernier task. Journal of Vision, 2008, 8, 16-16.	0.3	6

#	Article	IF	CITATIONS
55	Do masks terminate the icon?. Quarterly Journal of Experimental Psychology, 2006, 59, 150-160.	1.1	27
56	The comparison of spatially separated colours. Vision Research, 2006, 46, 823-836.	1.4	32
57	Color discrimination in carriers of color deficiency. Vision Research, 2006, 46, 2894-2900.	1.4	42
58	2005 Verriest Medal awarded to Professor John D. Mollon. Visual Neuroscience, 2006, 23, ii-ii.	1.0	0
59	The gap effect is exaggerated in parafovea. Visual Neuroscience, 2006, 23, 509-517.	1.0	4
60	Monge: The Verriest Lecture, Lyon, July 2005. Visual Neuroscience, 2006, 23, 297-309.	1.0	93
61	Blue cone monochromatism: a phenotype and genotype assessment with evidence of progressive loss of cone function in older individuals. Eye, 2005, 19, 2-10.	2.1	61
62	Multidimensional scaling reveals a color dimension unique to â€~color-deficient' observers. Current Biology, 2005, 15, R950-R952.	3.9	68
63	A detailed phenotypic study of "cone dystrophy with supernormal rod ERG". British Journal of Ophthalmology, 2005, 89, 332-339.	3.9	63
64	X-Linked Cone Dysfunction Syndrome with Myopia and Protanopia. Ophthalmology, 2005, 112, 1448-1454.	5.2	53
65	Progressive Cone Dystrophy Associated with Mutation inCNGB3. , 2004, 45, 1975.		74
66	Achromatopsia caused by novel mutations in both CNGA3 and CNGB3. Journal of Medical Genetics, 2004, 41, 20e-20.	3.2	109
67	Modelling the Rayleigh match. Visual Neuroscience, 2004, 21, 477-482.	1.0	23
68	Is the S-opponent chromatic sub-system sluggish?. Vision Research, 2004, 44, 2919-2929.	1.4	57
69	Colors of primate pelage and skin: Objective assessment of conspicuousness. American Journal of Primatology, 2003, 59, 67-91.	1.7	122
70	The Origins of Modern Color Science. , 2003, , 1-39.		47
71	Cone dystrophy phenotype associated with a frameshift mutation (M280fsX291) in the Â-subunit of cone specific transducin (GNAT2). British Journal of Ophthalmology, 2003, 87, 1317-1320.	3.9	45
72	Comparison at a Distance. Perception, 2003, 32, 395-414.	1.2	20

#	Article	IF	CITATIONS
73	The origins of the concept of interference. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2002, 360, 807-819.	3.4	20
74	Conditions under Which Stereopsis and Motion Perception are Blind. Perception, 2002, 31, 65-71.	1.2	14
75	Signals Invisible to the Collicular and Magnocellular Pathways Can Capture Visual Attention. Current Biology, 2002, 12, 1312-1316.	3.9	100
76	A cluster of single nucleotide polymorphisms in the 5′-leader of the human dopamine D3 receptor gene (DRD3) and its relationship to schizophrenia. Neuroscience Letters, 2000, 279, 13-16.	2.1	45
77	Catarrhine Photopigments are Optimized for Detecting Targets Against a Foliage Background. Journal of Experimental Biology, 2000, 203, 1963-1986.	1.7	230
78	Chromaticity as a Signal of Ripeness in Fruits Taken by Primates. Journal of Experimental Biology, 2000, 203, 1987-2000.	1.7	144
79	Color vision: Opsins and options. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 4743-4745.	7.1	37
80	Colour discrimination thresholds in Parkinson's disease: results obtained with a rapid computer-controlled colour vision test. Vision Research, 1998, 38, 3427-3431.	1.4	49
81	Shift in Rayleigh matches after adaptation to monochromatic light of various intensities. Vision Research, 1998, 38, 3253-3257.	1.4	2
82	Molecular evolution of trichromacy in primates. Vision Research, 1998, 38, 3299-3306.	1.4	151
83	Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey. Vision Research, 1998, 38, 3321-3327.	1.4	140
84	Colour discrimination ellipses in patients with dominant optic atrophy. Vision Research, 1998, 38, 3413-3419.	1.4	31
85	Motion Minima for Different Directions in Color Space. Vision Research, 1997, 37, 1479-1498.	1.4	17
86	Adaptation and the color statistics of natural images. Vision Research, 1997, 37, 3283-3298.	1.4	251
87	" On the Basis of Velocity Clues Alone": Some Perceptual Themes 1946-1996. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 1997, 50, 859-878.	2.3	2
88	Association of CAG repeat expansions with clinical features of schizophrenia. Schizophrenia Research, 1996, 18, 168.	2.0	1
89	Association studies of the DRD3 dopamine receptor gene and the NT-3 (neurotrophin-3) gene in unrelated schizophrenics. Schizophrenia Research, 1996, 18, 163.	2.0	0
90	Measurements of Human Sensitivity to Comb-filtered Spectra. Vision Research, 1996, 36, 2713-2720.	1.4	11

JOHN MOLLON

#	Article	IF	CITATIONS
91	Susanne Liebmann in the Critical Zone. Perception, 1996, 25, 1451-1495.	1.2	8
92	<title>Color in natural images and its implications for visual adaptation</title> . , 1996, , .		2
93	Three remarks on perceptual learning. Spatial Vision, 1996, 10, 51-58.	1.4	200
94	Colour constancy influenced by contrast adaptation. Nature, 1995, 373, 694-698.	27.8	126
95	What do colour-blind people see?. Nature, 1995, 376, 127-128.	27.8	129
96	The chemistry of John Dalton's color blindness. Science, 1995, 267, 984-988.	12.6	99
97	Adaptive evolution of color vision genes in higher primates. Science, 1995, 269, 1265-1267.	12.6	97
98	CAG repeat expansions and schizophrenia: association with disease in females and with early age-at-onset. Human Molecular Genetics, 1995, 4, 1957-1961.	2.9	131
99	Rayleigh matches and unique green. Vision Research, 1995, 35, 613-620.	1.4	48
100	Sequence and Evolution of the Blue Cone Pigment Gene in Old and New World Primates. Genomics, 1995, 27, 535-538.	2.9	42
101	Association study of CAG expansions with schizophrenia. Schizophrenia Research, 1995, 15, 41.	2.0	2
102	The influence of contrast adaptation on color appearance. Vision Research, 1994, 34, 1993-2020.	1.4	213
103	Luminance noise and the rapid determination of discrimination ellipses in colour deficiency. Vision Research, 1994, 34, 1279-1299.	1.4	288
104	Sequence divergence, polymorphism and evolution of the middle-wave and long-wave visual pigment genes of great apes and old world monkeys. Vision Research, 1994, 34, 2483-2491.	1.4	75
105	Mixing genes and mixing colours. Current Biology, 1993, 3, 82-85.	3.9	6
106	A study of women heterozygous for colour deficiencies. Vision Research, 1993, 33, 1495-1508.	1.4	210
107	Structure and evolution of the polymorphic photopigment gene of the marmoset. Vision Research, 1993, 33, 147-154.	1.4	70
	The relationship between cone pigments and behavioural sensitivity in a new world monkey (Callithrix) Ti ETOOO		

The relationship between cone pigments and behavioural sensitivity in a new world monkey (Callithrix) Tj ETQq000 rgBT /Overlock 10 T 1.4

#	Article	IF	CITATIONS
109	A reduction in stimulus duration can improve wavelength discriminations mediated by short-wave cones. Vision Research, 1992, 32, 745-755.	1.4	11
110	The polymorphic photopigments of the marmoset: spectral tuning and genetic basis EMBO Journal, 1992, 11, 2039-2045.	7.8	112
111	Worlds of difference. Nature, 1992, 356, 378-379.	27.8	42
112	The spatial arrangement of cones in the primate fovea. Nature, 1992, 360, 677-679.	27.8	140
113	Changes in colour appearance following post-receptoral adaptation. Nature, 1991, 349, 235-238.	27.8	243
114	Hue and the heptahelicals. Nature, 1991, 351, 696-697.	27.8	12
115	Discussion: Biophysics and Psychophysics of Photoreceptors. , 1991, , 35-40.		0
116	<title>Difficulties faced by color-anomalous observers in interpreting color displays</title> . , 1990, , .		3
117	The club-sandwich mystery. Nature, 1990, 343, 16-17.	27.8	52
118	Polymorphism of visual pigments in a callitrichid monkey. Vision Research, 1988, 28, 481-490.	1.4	98
119	Transient tritanopia of a second kind. Vision Research, 1987, 27, 637-650.	1.4	14
120	John Elliot MD (1747–1787). Nature, 1987, 329, 19-20.	27.8	9
121	The discriminability of colours on c.r.t. displays. Journal of the Institution of Electronic and Radio Engineers, 1986, 56, 107.	0.1	15
122	Walter Stanley Stiles 1901–1985. Perception, 1986, 15, 657-666.	1.2	1
123	The Spectral Sensitivities of the Middle- and Long-Wavelength Cones: An Extension of the Two-Colour Threshold Technique of W S Stiles. Perception, 1986, 15, 729-754.	1.2	29
124	Molecular genetics: Understanding colour vision. Nature, 1986, 321, 12-13.	27.8	12
125	Perception: Questions of sex and colour. Nature, 1986, 323, 578-579.	27.8	17
126	Two types of trichromatic squirrel monkey share a pigment in the red-green spectral region. Vision Research, 1985, 25, 1937-1946.	1.4	35

#	Article	IF	CITATIONS
127	Microspectrophotometric measurements indicate variation in the visual pigments of the common marmoset, a new world primate. Vision Research, 1984, 24, 1698.	1.4	2
128	Color Vision. Annual Review of Psychology, 1982, 33, 41-85.	17.7	180
129	Behavioural and microspectrophotometric measurements of colour vision in monkeys. Nature, 1981, 292, 541-543.	27.8	28
130	Post-receptoral processes in colour vision. Nature, 1980, 283, 623-624.	27.8	16
131	Microspectrophotometric demonstration of four classes of photoreceptor in an old world primate, Macaca fascicularis Journal of Physiology, 1980, 298, 131-143.	2.9	134
132	Post-receptoral adaptation. Vision Research, 1979, 19, 435-440.	1.4	31
133	A theory of theÎ1andÎ3color mechanisms of stiles. Vision Research, 1979, 19, 293-312.	1.4	211
134	The visual pigments of rods and cones in the rhesus monkey, Macaca mulatta Journal of Physiology, 1978, 274, 329-348.	2.9	105
135	Saturation of a retinal cone mechanism. Nature, 1977, 265, 243-246.	27.8	46
136	Colour illusion and evidence for interaction between cone mechanisms. Nature, 1975, 258, 421-422.	27.8	45
137	Reaction time as a measure of the temporal response properties of individual colour mechanisms. Vision Research, 1973, 13, 27-40.	1.4	135
138	The independence of the temporal integration properties of individual chromatic mechanisms in the human eye. Journal of Physiology, 1971, 219, 611-623.	2.9	76
139	Fixation and Perception. Optica Acta, 1968, 15, 295-297.	0.7	1