
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1692431/publications.pdf Version: 2024-02-01

YUNVING LI

#	Article	IF	CITATIONS
1	Inverse Pickering Emulsion Stabilized by Binary Particles with Contrasting Characteristics and Functionality for Interfacial Biocatalysis. ACS Applied Materials & Interfaces, 2020, 12, 4989-4997.	8.0	79
2	A two-dimensional semiconducting covalent organic framework with nickel(<scp>ii</scp>) coordination for high capacitive performance. Journal of Materials Chemistry A, 2019, 7, 19676-19681.	10.3	68
3	Starch nanocrystals as particle stabilisers of oil-in-water emulsions. Journal of the Science of Food and Agriculture, 2014, 94, 1802-1807.	3.5	64
4	One-pot synthesis of a highly porous anionic hypercrosslinked polymer for ultrafast adsorption of organic pollutants. Polymer Chemistry, 2018, 9, 4724-4732.	3.9	59
5	Facile and Controlled Fabrication of Functional Gold Nanoparticleâ€coated Polystyrene Composite Particle. Macromolecular Rapid Communications, 2011, 32, 1741-1747.	3.9	54
6	A porphyrin porous organic polymer with bicatalytic sites for highly efficient one-pot tandem catalysis. Chemical Communications, 2019, 55, 822-825.	4.1	49
7	All‣ilica Submicrometer Colloidosomes for Cargo Protection and Tunable Release. Angewandte Chemie - International Edition, 2018, 57, 11662-11666.	13.8	47
8	Porphyrin-based porous polyimide polymer/Pd nanoparticle composites as efficient catalysts for Suzuki–Miyaura coupling reactions. Polymer Chemistry, 2018, 9, 1430-1438.	3.9	43
9	Three-dimensional conductive porous organic polymers based on tetrahedral polythiophene for high-performance supercapacitors. New Journal of Chemistry, 2018, 42, 6247-6255.	2.8	40
10	A facile method to fabricate polystyrene/silver composite particles and their catalytic properties. RSC Advances, 2013, 3, 26361.	3.6	36
11	Ultra-stable Pickering emulsion stabilized by a natural particle bilayer. Chemical Communications, 2020, 56, 14011-14014.	4.1	36
12	A Facile and Efficient Route for Coating Polyaniline onto Positively Charged Substrate. Macromolecules, 2010, 43, 4468-4471.	4.8	35
13	Efficient coating of polystyrene microspheres with graphene nanosheets. Chemical Communications, 2011, 47, 10722.	4.1	33
14	Investigation of the stability in Pickering emulsions preparation with commercial cosmetic ingredients. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 125082.	4.7	33
15	A Hexagonal Covalent Porphyrin Framework as an Efficient Support for Gold Nanoparticles toward Catalytic Reduction of 4â€Nitrophenol. Chemistry - A European Journal, 2016, 22, 17029-17036.	3.3	32
16	A metalloporphyrin-based porous organic polymer as an efficient catalyst for the catalytic oxidation of olefins and arylalkanes. Dalton Transactions, 2017, 46, 11372-11379.	3.3	32
17	A three-dimensional porphyrin-based porous organic polymer with excellent biomimetic catalytic performance. Polymer Chemistry, 2017, 8, 4327-4331.	3.9	32
18	A facile and efficient synthesis of polystyrene/gold–platinum composite particles and their application for aerobic oxidation of alcohols in water. Chemical Communications, 2015, 51, 7721-7724.	4.1	30

#	Article	IF	CITATIONS
19	Submicron Inverse Pickering Emulsions for Highly Efficient and Recyclable Enzymatic Catalysis. Chemistry - an Asian Journal, 2018, 13, 3533-3539.	3.3	30
20	Controlled synthesis of metal-organic frameworks coated with noble metal nanoparticles and conducting polymer for enhanced catalysis. Journal of Colloid and Interface Science, 2019, 537, 262-268.	9.4	30
21	A Smart Route for Encapsulating Pd Nanoparticles into a ZIF-8 Hollow Microsphere and Their Superior Catalytic Properties. Langmuir, 2020, 36, 2037-2043.	3.5	30
22	A 2D donor–acceptor covalent organic framework with charge transfer for supercapacitors. Chemical Communications, 2020, 56, 14187-14190.	4.1	29
23	Facile preparation of zein nanoparticles with tunable surface hydrophobicity and excellent colloidal stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 591, 124554.	4.7	27
24	All-natural oil-in-water high internal phase Pickering emulsions featuring interfacial bilayer stabilization. Journal of Colloid and Interface Science, 2022, 607, 1491-1499.	9.4	27
25	Synthesis and structural control of gold nanoparticles-coated polystyrene composite particles based on colloid thermodynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 414, 504-511.	4.7	24
26	Controlling the morphology of micrometre-size polystyrene/polyaniline composite particles by Swelling–Diffusion–Interfacial-Polymerization Method. Polymer, 2011, 52, 409-414.	3.8	23
27	Facile encapsulation of thymol within deamidated zein nanoparticles for enhanced stability and antibacterial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 126940.	4.7	23
28	Colloid Thermodynamic Effect as the Universal Driving Force for Fabricating Various Functional Composite Particles. Langmuir, 2012, 28, 12704-12710.	3.5	22
29	Pickering Emulsions Simultaneously Stabilized by Starch Nanocrystals and Zein Nanoparticles: Fabrication, Characterization, and Application. Langmuir, 2021, 37, 8577-8584.	3.5	22
30	Engineering hybrid microgels as particulate emulsifiers for reversible Pickering emulsions. Chemical Science, 2021, 13, 39-43.	7.4	22
31	A general and mild route to highly dispersible anisotropic magnetic colloids for sensing weak magnetic fields. Journal of Materials Chemistry C, 2018, 6, 5528-5535.	5.5	21
32	Engineering proteinaceous colloidosomes as enzyme carriers for efficient and recyclable Pickering interfacial biocatalysis. Chemical Science, 2021, 12, 12463-12467.	7.4	20
33	A facile and environmentally friendly method for the synthesis of hollow silica particles in a self-stable dispersion. Journal of Materials Chemistry, 2010, 20, 5516.	6.7	19
34	In Situ Growth of Clean Pd Nanoparticles on Polystyrene Microspheres Assisted by Functional Reduced Graphene Oxide and Their Excellent Catalytic Properties. Langmuir, 2017, 33, 8157-8164.	3.5	19
35	A facile strategy for synthesis of multilayer and conductive organo-silica/polystyrene/polyaniline composite particles. Journal of Colloid and Interface Science, 2011, 355, 269-273.	9.4	18
36	Highly facile and efficient assembly of palladium nanoparticles on polystyrene microspheres and their application in catalysis. New Journal of Chemistry, 2015, 39, 8108-8113.	2.8	18

#	Article	IF	CITATIONS
37	Iron(<scp>ii</scp>)-triazole core–shell nanocomposites: toward multistep spin crossover materials. Chemical Communications, 2016, 52, 8034-8037.	4.1	18
38	Functional polyaniline-assisted decoration of polystyrene microspheres with noble metal nanoparticles and their enhanced catalytic properties. New Journal of Chemistry, 2016, 40, 10398-10405.	2.8	18
39	Facile fabrication of polystyrene microsphere supported gold-palladium alloy nanoparticles with superior catalytic performance for the reduction of 4-nitrophenol in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 417-424.	4.7	18
40	Stable Fluorescence of Greenâ€Emitting Carbon Nanodots as a Potential Nanothermometer in Biological Media. Particle and Particle Systems Characterization, 2017, 34, 1600197.	2.3	17
41	Facile and controllable synthesis of polystyrene/palladium nanoparticle@polypyrrole nanocomposite particles. Polymer Chemistry, 2013, 4, 4655.	3.9	16
42	A simple and general approach for the decoration of interior surfaces of silica hollow microspheres with noble metal nanoparticles and their application in catalysis. Inorganic Chemistry Frontiers, 2017, 4, 1634-1641.	6.0	16
43	Controlled preparation of core–shell polystyrene/polypyrrole nanocomposite particles by a swelling–diffusion–interfacial polymerization method. Colloid and Polymer Science, 2012, 290, 979-985.	2.1	14
44	Reduced graphene oxide@ceria nanocomposite-coated polymer microspheres as a highly active photocatalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 567, 161-170.	4.7	14
45	Facile fabrication of PS/Fe ₃ O ₄ @PANi nanocomposite particles and their application for the effective removal of Cu ²⁺ . New Journal of Chemistry, 2017, 41, 14137-14144.	2.8	13
46	Facile fabrication of raspberry-like polystyrene/ceria composite particles and their catalytic application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 818-824.	4.7	13
47	One-step synthesis of silica hollow particles in a W/O inverse emulsion. Colloid and Polymer Science, 2013, 291, 2697-2704.	2.1	12
48	Simple surface-assisted formation of palladium nanoparticles on polystyrene microspheres and their application in catalysis. Inorganic Chemistry Frontiers, 2018, 5, 1133-1138.	6.0	12
49	A facile strategy for the synthesis of ferroferric oxide/titanium dioxide/molybdenum disulfide heterostructures as a magnetically separable photocatalyst under visible-light. Journal of Colloid and Interface Science, 2018, 516, 138-144.	9.4	12
50	Photochromic organic cage-encapsulated Au nanoparticles: light-regulated cavities for catalytic reduction of 4-nitrophenol. Dalton Transactions, 2020, 49, 12145-12149.	3.3	11
51	Facile preparation of raspberry-like PS/ZnO composite particles and their antibacterial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599, 124867.	4.7	11
52	Facile synthesis of PS/RGO@AuNP composite particles as highly active and reusable catalyst for catalytic reduction of p-nitrophenol. Colloid and Polymer Science, 2016, 294, 1165-1172.	2.1	10
53	Controlling the heterocoagulation process for fabricating PS–CoFe2O4 nanocomposite particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 339, 100-105.	4.7	9
54	Controlling the structure of hollow polystyrene particles based on diffusion kinetics in miniemulsion polymerization system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 363, 141-145.	4.7	9

#	Article	IF	CITATIONS
55	Facile and controllable synthesis of PS/AuNPs@PANi composite particles via Swelling–Diffusion–Interfacial-Polymerization Method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 407, 71-76.	4.7	9
56	Facile synthesis of polystyrene/gold composite particles as a highly active and reusable catalyst for aerobic oxidation of benzyl alcohol in water. RSC Advances, 2014, 4, 24769-24772.	3.6	9
57	Facile synthesis and light scattering characteristics of polystyrene/poly(3,4-ethylenedioxythiophene) nanocomposite particles. Polymer, 2011, 52, 4785-4791.	3.8	8
58	All‧ilica Submicrometer Colloidosomes for Cargo Protection and Tunable Release. Angewandte Chemie, 2018, 130, 11836-11840.	2.0	7
59	Diarylethene-based conjugated polymer networks for ultrafast photochromic films. New Journal of Chemistry, 2019, 43, 15797-15803.	2.8	7
60	A green and facile strategy for the fabrication of all-natural porous proteinaceous microspheres. Materials Chemistry Frontiers, 2021, 5, 3897-3902.	5.9	7
61	Oneâ€Step Preparation of Allâ€Natural Pickering Double Emulsions Stabilized by Oppositely Charged Biopolymer Particles. Advanced Materials Interfaces, 2021, 8, 2101568.	3.7	7
62	Facile Morphologyâ€Tunable Preparation of CuS@MoS2Heterostructures Based on Template Solvothermal Method. ChemistrySelect, 2020, 5, 360-368.	1.5	6
63	Smart construction of palladium@polypyrrole nanocomposite coating on a magnetic support as a highly efficient and recyclable catalyst. New Journal of Chemistry, 2018, 42, 15946-15953.	2.8	5
64	Synthesis of structured hollow microspheres with sandwich-like hybrid shell of RGO/Pd/m-SiO2 for highly efficient catalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 129-137.	4.7	5
65	Measurements of Particle–Surface Interactions in Both Equilibrium and Nonequilibrium Systems. Langmuir, 2019, 35, 8910-8920.	3.5	4
66	Surfactantâ€Dependent Charge Transfer between Polyoxometalates and Singleâ€Walled Carbon Nanotubes: A Fluorescence Spectroscopic Study. Chemistry - an Asian Journal, 2018, 13, 210-216.	3.3	3
67	A polyaniline inverse opal/nanofiber network film fabricated at an air–water interface. New Journal of Chemistry, 2018, 42, 12960-12967.	2.8	3
68	Facile preparation of α-Fe2O3/carbon and polyhydroxy iron cation/polyaniline hollow particles. Colloid and Polymer Science, 2013, 291, 1287-1291.	2.1	2
69	Synthesis of Polypyrrole Inverse Opals through an Air–Water Interface Polymerization Method and Their Application in Dye‧ensitized Solar Cells. Macromolecular Chemistry and Physics, 2018, 219, 1700489.	2.2	2
70	Multifunctional Silica-Modified Hybrid Microgels Templated from Inverse Pickering Emulsions. Langmuir, 2022, 38, 6571-6578.	3.5	2
71	Antioxidant hollow structures to reduce the risk of sunscreen. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127352.	4.7	1
72	A soft and recyclable carbon nanotube/carbon nanofiber hybrid membrane for oil/water separation. Journal of Applied Polymer Science, 0, , 52133.	2.6	1

#	Article	IF	CITATIONS
73	Asymmetric deformation of swollen microspheres on a water surface. RSC Advances, 2016, 6, 50368-50372.	3.6	о
74	Oneâ€Step Preparation of Allâ€Natural Pickering Double Emulsions Stabilized by Oppositely Charged Biopolymer Particles (Adv. Mater. Interfaces 23/2021). Advanced Materials Interfaces, 2021, 8, .	3.7	0
75	Efficient Antimicrobial Effect of Alginate–Catechol/Fe ²⁺ Coating on Hydroxyapatite toward Oral Care Application. ACS Applied Bio Materials, 2022, 5, 2152-2162.	4.6	0