David H Margulies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1691735/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chaperones and Catalysts: How Antigen Presentation Pathways Cope With Biological Necessity. Frontiers in Immunology, 2022, 13, 859782.	4.8	14
2	Structures of synthetic nanobody–SARS-CoV-2 receptor-binding domain complexes reveal distinct sites of interaction. Journal of Biological Chemistry, 2021, 297, 101202.	3.4	28
3	Structures of synthetic nanobodies in complex with SARS-CoV-2 spike or receptor-binding domain provide insights for developing therapeutics and vaccines. Acta Crystallographica Section A: Foundations and Advances, 2021, 77, a8-a8.	0.1	0
4	Structural and dynamic studies of TAPBPR and Tapasin reveal the mechanism of peptide loading of MHC-I molecules. Current Opinion in Immunology, 2020, 64, 71-79.	5.5	19
5	Cutting Edge: Inhibition of the Interaction of NK Inhibitory Receptors with MHC Class I Augments Antiviral and Antitumor Immunity. Journal of Immunology, 2020, 205, 567-572.	0.8	3
6	Alterations in the HLA-B*57:01 Immunopeptidome by Flucloxacillin and Immunogenicity of Drug-Haptenated Peptides. Frontiers in Immunology, 2020, 11, 629399.	4.8	16
7	Mouse Cytomegalovirus m153 Protein Stabilizes Expression of the Inhibitory NKR-P1B Ligand Clr-b. Journal of Virology, 2019, 94, .	3.4	6
8	MHCâ€restricted Ag85Bâ€specific CD8 ⁺ TÂcells are enhanced by recombinant BCG prime and DNA boost immunization in mice. European Journal of Immunology, 2019, 49, 1399-1414.	2.9	9
9	Structural aspects of chaperone-mediated peptide loading in the MHC-I antigen presentation pathway. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 164-173.	5.2	8
10	Cutting antigenic peptides down to size. Journal of Biological Chemistry, 2019, 294, 18545-18546.	3.4	2
11	Structure and Function of Molecular Chaperones that Govern Immune Peptide Loading. Sub-Cellular Biochemistry, 2019, 93, 321-337.	2.4	3
12	MHC Molecules, T cell Receptors, Natural Killer Cell Receptors, and Viral Immunoevasins—Key Elements of Adaptive and Innate Immunity. Advances in Experimental Medicine and Biology, 2019, 1172, 21-62.	1.6	28
13	How MHC molecules grab citrullinated peptides to foster rheumatoid arthritis. Journal of Biological Chemistry, 2018, 293, 3252-3253.	3.4	6
14	Effects of Cross-Presentation, Antigen Processing, and Peptide Binding in HIV Evasion of T Cell Immunity. Journal of Immunology, 2018, 200, ji1701523.	0.8	11
15	The Role of Molecular Flexibility in Antigen Presentation and T Cell Receptor-Mediated Signaling. Frontiers in Immunology, 2018, 9, 1657.	4.8	51
16	Peptide exchange on MHC-I by TAPBPR is driven by a negative allostery release cycle. Nature Chemical Biology, 2018, 14, 811-820.	8.0	74
17	A transgenic mouse model for HLA-B*57:01–linked abacavir drug tolerance and reactivity. Journal of Clinical Investigation, 2018, 128, 2819-2832.	8.2	47
18	An allosteric site in the T-cell receptor CÎ ² domain plays a critical signalling role. Nature Communications, 2017, 8, 15260.	12.8	64

#	Article	IF	CITATIONS
19	Crystal structure of a TAPBPR–MHC I complex reveals the mechanism of peptide editing in antigen presentation. Science, 2017, 358, 1064-1068.	12.6	111
20	Lipopolysaccharide-Induced CD300b Receptor Binding to Toll-like Receptor 4 Alters Signaling to Drive Cytokine Responses that Enhance Septic Shock. Immunity, 2016, 44, 1365-1378.	14.3	54
21	Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1006-15.	7.1	73
22	The cellular environment regulates in situ kinetics of Tâ€cell receptor interaction with peptide major histocompatibility complex. European Journal of Immunology, 2015, 45, 2099-2110.	2.9	37
23	A Novel MHC-I Surface Targeted for Binding by the MCMV m06 Immunoevasin Revealed by Solution NMR. Journal of Biological Chemistry, 2015, 290, 28857-28868.	3.4	12
24	William E. Paul 1936–2015. Nature Immunology, 2015, 16, 1205-1205.	14.5	0
25	CD300b regulates the phagocytosis of apoptotic cells via phosphatidylserine recognition. Cell Death and Differentiation, 2014, 21, 1746-1757.	11.2	70
26	The in-betweeners: MAIT cells join the innate-like lymphocytes gang. Journal of Experimental Medicine, 2014, 211, 1501-1502.	8.5	9
27	The Structure of Mouse Cytomegalovirus m04 Protein Obtained from Sparse NMR Data Reveals a Conserved Fold of the m02-m06 Viral Immune Modulator Family. Structure, 2014, 22, 1263-1273.	3.3	23
28	A structural and molecular dynamics approach to understanding the peptide-receptive transition state of MHC-I molecules. Molecular Immunology, 2013, 55, 123-125.	2.2	16
29	Abacavir induces loading of novel self-peptides into HLA-B*57. Aids, 2012, 26, F21-F29.	2.2	196
30	Structural basis of mouse cytomegalovirus m152/gp40 interaction with RAE1γ reveals a paradigm for MHC/MHC interaction in immune evasion. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3578-87.	7.1	30
31	The Peptide-Receptive Transition State of MHC Class I Molecules: Insight from Structure and Molecular Dynamics. Journal of Immunology, 2012, 189, 1391-1399.	0.8	59
32	Chimeric Anti-Staphylococcal Enterotoxin B Antibodies and Lovastatin Act Synergistically to Provide In Vivo Protection against Lethal Doses of SEB. PLoS ONE, 2011, 6, e27203.	2.5	18
33	How the Virus Outsmarts the Host: Function and Structure of Cytomegalovirus MHC-I-Like Molecules in the Evasion of Natural Killer Cell Surveillance. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-12.	3.0	33
34	Potent Neutralization of Staphylococcal Enterotoxin B by Synergistic Action of Chimeric Antibodies. Infection and Immunity, 2010, 78, 2801-2811.	2.2	35
35	Direct Interaction of the Mouse Cytomegalovirus m152/gp40 Immunoevasin with RAE-1 Isoforms. Biochemistry, 2010, 49, 2443-2453.	2.5	31
36	Induction of Immune Responses. Current Protocols in Immunology, 2010, 89, 2.0.1.	3.6	2

#	Article	IF	CITATIONS
37	Ligandâ€Receptor Interactions in the Immune System. Current Protocols in Immunology, 2009, 87, 18.0.1.	3.6	0
38	A Single Residue, Arginine 65, Is Critical for the Functional Interaction of Leukocyte-Associated Inhibitory Receptor-1 with Collagens. Journal of Immunology, 2009, 182, 5446-5452.	0.8	39
39	Structural Basis of the CD8αβ/MHC Class I Interaction: Focused Recognition Orients CD8β to a T Cell Proximal Position. Journal of Immunology, 2009, 183, 2554-2564.	0.8	92
40	Different Vaccine Vectors Delivering the Same Antigen Elicit CD8+ T Cell Responses with Distinct Clonotype and Epitope Specificity. Journal of Immunology, 2009, 183, 2425-2434.	0.8	27
41	Structure and function of murine cytomegalovirus MHC-I-like molecules: how the virus turned the host defense to its advantage. Immunologic Research, 2009, 43, 264-279.	2.9	15
42	Antigen-processing and presentation pathways select antigenic HIV peptides in the fight against viral evolution. Nature Immunology, 2009, 10, 566-568.	14.5	2
43	Home Schooling of NK Cells. Immunity, 2009, 30, 313-315.	14.3	0
44	Engineering Immune Molecules and Receptors. Current Protocols in Immunology, 2009, 87, 17.0.1.	3.6	0
45	Induction of Immune Responses. Current Protocols in Immunology, 2009, 85, 2.0.1.	3.6	0
46	Availability of autoantigenic epitopes controls phenotype, severity, and penetrance in TCR Tg autoimmune gastritis. European Journal of Immunology, 2008, 38, 3339-3353.	2.9	8
47	Estimation of low frequency antigen-presenting cells with a novel RELISPOT assay. Journal of Immunological Methods, 2008, 333, 71-78.	1.4	2
48	The TLR3 signaling complex forms by cooperative receptor dimerization. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 258-263.	7.1	255
49	Cellular Expression and Crystal Structure of the Murine Cytomegalovirus Major Histocompatibility Complex Class I-like Glycoprotein, m153. Journal of Biological Chemistry, 2007, 282, 35247-35258.	3.4	22
50	Role of Â3 domain of class I MHC molecules in the activation of high- and low-avidity CD8+ CTLs. International Immunology, 2007, 19, 1413-1420.	4.0	7
51	Avidity of CD8 T cells sharpens immunodominance. International Immunology, 2007, 19, 497-507.	4.0	38
52	Crystal Structure of the Murine Cytomegalovirus MHC-I Homolog m144. Journal of Molecular Biology, 2006, 358, 157-171.	4.2	36
53	Letter to the Editor: Backbone and side chain resonance assignmentsof a TRAV14-3 mouse T cell receptor domain. Journal of Biomolecular NMR, 2005, 31, 271-272.	2.8	1
54	Monoclonal Antibodies: Producing Magic Bullets by Somatic Cell Hybridization. Journal of Immunology, 2005, 174, 2451-2452.	0.8	25

#	Article	IF	CITATIONS
55	Spontaneous Organ-Specific Th2-Mediated Autoimmunity in TCR Transgenic Mice. Journal of Immunology, 2004, 172, 2917-2924.	0.8	30
56	Resistance to viral infection by intraepithelial lymphocytes in HIV-1 P18-I10-specific T-cell receptor transgenic mice. Biochemical and Biophysical Research Communications, 2004, 316, 356-363.	2.1	6
57	MHC: Structure and Function. , 2004, , 29-44.		3
58	Variable MHC class I engagement by Ly49 natural killer cell receptors demonstrated by the crystal structure of Ly49C bound to H-2Kb. Nature Immunology, 2003, 4, 1213-1222.	14.5	127
59	Molecular Interactions. Immunity, 2003, 19, 772-774.	14.3	7
60	A Serine/Threonine Phosphorylation Site in the Ectodomain of a T Cell Receptor Î ² Chain is Required for Activation by Superantigen. Journal of Receptor and Signal Transduction Research, 2003, 23, 33-52.	2.5	1
61	CD28, Costimulator or Agonist Receptor?. Journal of Experimental Medicine, 2003, 197, 949-953.	8.5	27
62	Engineering Immune Molecules and Receptors. Current Protocols in Immunology, 2003, 53, 17.0.1.	3.6	0
63	Binding of the Natural Killer Cell Inhibitory Receptor Ly49A to Its Major Histocompatibility Complex Class I Ligand. Journal of Biological Chemistry, 2002, 277, 1433-1442.	3.4	65
64	Rapid Induction of Apoptosis in CD8+ HIV-1 Envelope-Specific Murine CTLs by Short Exposure to Antigenic Peptide. Journal of Immunology, 2002, 169, 6588-6593.	0.8	25
65	Structure and Function of Natural Killer Cell Receptors: Multiple Molecular Solutions to Self, Nonself Discrimination. Annual Review of Immunology, 2002, 20, 853-885.	21.8	305
66	Crystal Structure of the Ly49I Natural Killer Cell Receptor Reveals Variability in Dimerization Mode Within the Ly49 Family. Journal of Molecular Biology, 2002, 320, 573-585.	4.2	30
67	MHC class I recognition by Ly49 natural killer cell receptors. Molecular Immunology, 2002, 38, 1023-1027.	2.2	25
68	Ly49A allelic variation and MHC classÂl specificity. Immunogenetics, 2001, 53, 572-583.	2.4	30
69	Structural basis of MHC class I recognition by natural killer cell receptors. Immunological Reviews, 2001, 181, 52-65.	6.0	64
70	A T cell receptor transgenic model of severe, spontaneous organ-specific autoimmunity. European Journal of Immunology, 2001, 31, 2094-2103.	2.9	86
71	Activating CTL precursors to reveal CTL function without skewing the repertoire byin vitro expansion. European Journal of Immunology, 2001, 31, 3557-3566.	2.9	23
72	A "Chimeric―C57L-Derived Ly49 Inhibitory Receptor Resembling the Ly49D Activation Receptor. Cellular Immunology, 2001, 209, 29-41.	3.0	27

#	Article	IF	CITATIONS
73	TCR avidity: it's not how strong you make it, it's how you make it strong. Nature Immunology, 2001, 2, 669-670.	14.5	35
74	Competitive Inhibition In Vivo and Skewing of the T Cell Repertoire of Antigen-Specific CTL Priming by an Anti-Peptide-MHC Monoclonal Antibody. Journal of Immunology, 2001, 167, 699-707.	0.8	8
75	Two intermediate-avidity cytotoxic T lymphocyte clones with a disparity between functional avidity and MHC tetramer staining. International Immunology, 2001, 13, 817-824.	4.0	61
76	Control of Autoimmunity by Regulatory T Cells. Advances in Experimental Medicine and Biology, 2001, 490, 21-32.	1.6	59
77	Induction of Immune Responses. Current Protocols in Immunology, 2000, 38, 2.0.1.	3.6	0
78	Mapping the Ligand of the NK Inhibitory Receptor Ly49A on Living Cells. Journal of Immunology, 2000, 165, 6922-6932.	0.8	29
79	Antibodies Directed Against the MHC-I Molecule H-2Dd Complexed with an Antigenic Peptide: Similarities to a T Cell Receptor with the Same Specificity. Journal of Immunology, 2000, 165, 5703-5712.	0.8	29
80	Enhanced Antigen-Specific Antitumor Immunity with Altered Peptide Ligands that Stabilize the MHC-Peptide-TCR Complex. Immunity, 2000, 13, 529-538.	14.3	297
81	Crystal Structure of Human CD69:  A C-Type Lectin-Like Activation Marker of Hematopoietic Cells [,] . Biochemistry, 2000, 39, 14779-14786.	2.5	69
82	Peptide-Protein Interactions. , 2000, , 115-125.		1
83	Crystal structure of a lectin-like natural killer cell receptor bound to its MHC class I ligand. Nature, 1999, 402, 623-631.	27.8	247
84	Post-thymectomy autoimmune gastritis: fine specificity and pathogenicity of anti-H/K ATPase- reactive T cells. European Journal of Immunology, 1999, 29, 669-677.	2.9	126
85	Interaction of the NK Cell Inhibitory Receptor Ly49A with H-2Dd. Immunity, 1999, 11, 591-601.	14.3	50
86	An Allosteric Mechanism Controls Antigen Presentation by the H-2KbComplexâ€. Biochemistry, 1999, 38, 12165-12173.	2.5	28
87	The X-ray crystal structure of a Vα2.6Jα38 mouse T cell receptor domain at 2.5 å resolution: alternate modes of dimerization and crystal packing a 1Edited by I. A. Wilson. Journal of Molecular Biology, 1999, 289, 1153-1161.	4.2	12
88	Post-thymectomy autoimmune gastritis: fine specificity and pathogenicity of anti-H/K ATPase- reactive T cells. European Journal of Immunology, 1999, 29, 669-677.	2.9	5
89	The Lectin-Like NK Cell Receptor Ly-49A Recognizes a Carbohydrate-Independent Epitope on Its MHC Class I Ligand. Immunity, 1998, 8, 245-254.	14.3	70
90	Three-dimensional structure of H-2Dd complexed with an immunodominant peptide from human immunodeficiency virus envelope glycoprotein 120. Journal of Molecular Biology, 1998, 283, 179-191.	4.2	71

#	Article	IF	CITATIONS
91	bca: an activation-related B-cell gene. Molecular Immunology, 1998, 35, 55-63.	2.2	6
92	Split tolerance to the MHC class I molecule H-2Dd in animals transgenic for its soluble analog. Human Immunology, 1997, 52, 82-94.	2.4	12
93	T-cell receptors: Feeling out the complex. Current Biology, 1997, 7, R17-R20.	3.9	8
94	Interactions of TCRs with MHC-peptide complexes: a quantitative basis for mechanistic models. Current Opinion in Immunology, 1997, 9, 390-395.	5.5	63
95	A recombinant single-chain HLA-A2.1 molecule, with a cis active β-2-microglobulin domain, is biologically active in peptide binding and antigen presentation. Human Immunology, 1996, 49, 28-37.	2.4	6
96	Peptide Libraries Define the Fine Specificity of Anti-polysaccharide Antibodies toCryptococcus neoformans. Journal of Molecular Biology, 1996, 261, 11-22.	4.2	145
97	MHC Class I-Dependent and -Independent NK Cell Specificity. Chemical Immunology and Allergy, 1996, 64, 1-18.	1.7	2
98	The natural killer cell receptor Ly-49A recognizes a peptide-induced conformational determinant on its major histocompatibility complex class I ligand Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11792-11797.	7.1	78
99	Studying interactions involving the T-cell antigen receptor by surface plasmon resonance. Current Opinion in Immunology, 1996, 8, 262-270.	5.5	38
100	An affinity for learning. Nature, 1996, 381, 558-559.	27.8	17
101	Phosphorylation of Extracellular Domains of T-Lymphocyte Surface Proteins. Journal of Biological Chemistry, 1996, 271, 25677-25683.	3.4	37
102	A T cell receptor V alpha domain expressed in bacteria: does it dimerize in solution?. Journal of Experimental Medicine, 1996, 184, 1251-1258.	8.5	14
103	Measuring interactions of MHC class I molecules using surface plasmon resonance. Journal of Immunological Methods, 1995, 183, 77-94.	1.4	49
104	Identification of the Peptide Binding Motif for HLA-B44, One of the Most Common HLA-B Alleles in the Caucasian Population. Biochemistry, 1995, 34, 10130-10138.	2.5	72
105	A targeted glucocorticoid receptor antisense transgene increases thymocyte apoptosis and alters thymocyte development. Immunity, 1995, 3, 647-656.	14.3	175
106	A family of murine NK cell receptors specific for target cell MHC class I molecules. Seminars in Immunology, 1995, 7, 89-101.	5.6	53
107	Functional cell surface expression by a recombinant single-chain class I major histocompatibility complex molecule with acis-active β2-microglobulin domain. European Journal of Immunology, 1994, 24, 2633-2639.	2.9	22
108	New tricks for old molecules. Nature, 1994, 372, 323-324.	27.8	18

#	Article	IF	CITATIONS
109	Minimal requirements for peptide mediated activation of CD8+ CTL. Molecular Immunology, 1994, 31, 1285-1293.	2.2	66
110	MHC Class I/peptide interactions: Binding specificity and kinetics. Journal of Molecular Recognition, 1993, 6, 59-69.	2.1	25
111	Role of conserved regions of class I MHC molecules in the activation of CD8+ cytotoxic T lymphocytes by peptide and purified cell-free class I molecules. International Immunology, 1993, 5, 1129-1138.	4.0	17
112	Class I MHC/Peptide/ β 2-Microglobulin Interactions:The Basis of Cytotoxic T-Cell Recognition. , 1993, , 58-64.		0
113	CD8 expression alters the fine specificity of an alloreactive MHC class l-specific T hybridoma. International Immunology, 1992, 4, 455-466.	4.0	19
114	Failure of signaling through a chimeric class I-immunoglobulin molecule expressed on the surface of transfected B lymphoma cells and cells of transgenic mice. Cellular Immunology, 1992, 143, 80-96.	3.0	2
115	Peptides tailored to perfection?. Current Biology, 1992, 2, 211-213.	3.9	6
116	Immunochemical analysis of a recombinant, genetically engineered, secreted HLA-A2/Q10b fusion protein. Human Immunology, 1991, 32, 125-133.	2.4	15
117	Excess β2 microglobulin promoting functional peptide association with purified soluble class I MHC molecules. Nature, 1991, 349, 74-77.	27.8	128
118	Naked or peptide-clothed MHC?. Nature, 1989, 342, 124-125.	27.8	10
119	Inhibition of an allospecific T cell hybridoma by soluble class I proteins and peptides: Estimation of the affinity of a T cell receptor for MHC. Cell, 1989, 56, 47-55.	28.9	114
120	Structural requirements for class I MHC molecule-mediated antigen presentation and cytotoxic T cell recognition of an immunodominant determinant of the human immunodeficiency virus envelope protein Journal of Experimental Medicine, 1989, 170, 2023-2035.	8.5	108
121	Signals controlling alternative splicing of major histocompatibility complex H-2 class I pre-mRNA. Immunogenetics, 1988, 28, 81-90.	2.4	16
122	Engineering soluble major histocompatibility molecules: Why and how. Immunologic Research, 1987, 6, 101-116.	2.9	1
123	"Exon-shuffling" maps control of antibody- and T-cell-recognition sites to the NH2-terminal domain of the class II major histocompatibility polypeptide A beta Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 2940-2944.	7.1	96
124	T-cell recognition of a chimaeric class II/class I MHC molecule and the role of L3T4. Nature, 1985, 317, 425-427.	27.8	57
125	Cell surface expression of an in vitro recombinant class II/class I major histocompatibility complex gene product. Cell, 1985, 40, 247-257.	28.9	22
126	Exon shuffling: New genes from old. Survey of Immunologic Research, 1985, 4, 146-159.	0.4	14

#	Article	IF	CITATIONS
127	Functional expression of a transfected murine class II MHC gene. Nature, 1983, 306, 190-194.	27.8	64
128	Class I Genes of the major histocompatibility complex. Survey of Immunologic Research, 1983, 2, 271-274.	0.4	1
129	Structure and expression of a mouse major histocompatibility antigen gene, H-2Ld Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 1994-1998.	7.1	227
130	Exon shuffling: mapping polymorphic determinants on hybrid mouse transplantation antigens. Nature, 1982, 300, 755-757.	27.8	222
131	H–2-like genes in the Tla region of mouse chromosome 17. Nature, 1982, 295, 168-170.	27.8	58
132	Plasmacytomas and Hybridomas. , 1980, , 3-17.		10
133	A simple method for polyethylene glycol-promoted hybridization of mouse myeloma cells. Somatic Cell Genetics, 1977, 3, 231-236.	2.7	605
134	Somatic cell hybridization of mouse myeloma cells. Cell, 1976, 8, 405-415.	28.9	148