Kostas Stamatopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1691225/publications.pdf

Version: 2024-02-01

333 papers 9,286 citations

46918 47 h-index 87 g-index

335 all docs 335 docs citations

335 times ranked 8882 citing authors

#	Article	IF	CITATIONS
1	Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature, 2015, 526, 519-524.	13.7	749
2	Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: pathogenetic implications and clinical correlations. Blood, 2007, 109, 259-270.	0.6	454
3	Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood, 2012, 119, 4467-4475.	0.6	350
4	Human memory B cells originate from three distinct germinal center-dependent and -independent maturation pathways. Blood, 2011, 118, 2150-2158.	0.6	331
5	The genetics of Richter syndrome reveals disease heterogeneity and predicts survival after transformation. Blood, 2011, 117, 3391-3401.	0.6	316
6	Stereotyped patterns of somatic hypermutation in subsets of patients with chronic lymphocytic leukemia: implications for the role of antigen selection in leukemogenesis. Blood, 2008, 111, 1524-1533.	0.6	285
7	Molecular Subsets of Mantle Cell Lymphoma Defined by the <i>IGHV</i> Mutational Status and SOX11 Expression Have Distinct Biologic and Clinical Features. Cancer Research, 2012, 72, 5307-5316.	0.4	231
8	Two main genetic pathways lead to the transformation of chronic lymphocytic leukemia to Richter syndrome. Blood, 2013, 122, 2673-2682.	0.6	208
9	COVID-19 severity and mortality in patients with chronic lymphocytic leukemia: a joint study by ERIC, the European Research Initiative on CLL, and CLL Campus. Leukemia, 2020, 34, 2354-2363.	3.3	198
10	Geographic patterns and pathogenetic implications of IGHV gene usage in chronic lymphocytic leukemia: the lesson of the IGHV3-21 gene. Blood, 2005, 105, 1678-1685.	0.6	180
11	Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study. Leukemia, 2019, 33, 2241-2253.	3.3	177
12	Cytogenetic aberrations and their prognostic value in a series of 330 splenic marginal zone B-cell lymphomas: a multicenter study of the Splenic B-Cell Lymphoma Group. Blood, 2010, 116, 1479-1488.	0.6	174
13	Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact. Blood, 2019, 133, 1205-1216.	0.6	164
14	Is there a role for antigen selection in mantle cell lymphoma? Immunogenetic support from a series of 807 cases. Blood, 2011, 118, 3088-3095.	0.6	149
15	Whole-exome sequencing in relapsing chronic lymphocytic leukemia: clinical impact of recurrent RPS15 mutations. Blood, 2016, 127, 1007-1016.	0.6	130
16	Genetics and Prognostication in Splenic Marginal Zone Lymphoma: Revelations from Deep Sequencing. Clinical Cancer Research, 2015, 21, 4174-4183.	3.2	129
17	The immunoglobulin gene repertoire of low-count chronic lymphocytic leukemia (CLL)–like monoclonal B lymphocytosis is different from CLL: diagnostic implications for clinical monitoring. Blood, 2009, 114, 26-32.	0.6	122
18	Chromosomal translocations and karyotype complexity in chronic lymphocytic leukemia: A systematic reappraisal of classic cytogenetic data. American Journal of Hematology, 2014, 89, 249-255.	2.0	113

#	Article	IF	Citations
19	Immunoglobulin light chain repertoire in chronic lymphocytic leukemia. Blood, 2005, 106, 3575-3583.	0.6	96
20	Clinical effect of stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: a retrospective multicentre study. Lancet Haematology,the, 2014, 1, e74-e84.	2.2	93
21	Distinct homotypic B-cell receptor interactions shape the outcome of chronic lymphocytic leukaemia. Nature Communications, 2017, 8, 15746.	5.8	93
22	Next-generation sequencing of immunoglobulin gene rearrangements for clonality assessment: a technical feasibility study by EuroClonality-NGS. Leukemia, 2019, 33, 2227-2240.	3.3	92
23	Functional loss of llºBlµ leads to NF-lºB deregulation in aggressive chronic lymphocytic leukemia. Journal of Experimental Medicine, 2015, 212, 833-843.	4.2	85
24	The normal IGHV1-69–derived B-cell repertoire contains stereotypic patterns characteristic of unmutated CLL. Blood, 2010, 115, 71-77.	0.6	83
25	Frequent NFKBIE deletions are associated with poor outcome in primary mediastinal B-cell lymphoma. Blood, 2016, 128, 2666-2670.	0.6	82
26	Immunogenetics shows that not all MBL are equal: the larger the clone, the more similar to CLL. Blood, 2013, 121, 4521-4528.	0.6	81
27	Clonal B-cell lymphocytosis exhibiting immunophenotypic features consistent with a marginal-zone origin: is this a distinct entity?. Blood, 2014, 123, 1199-1206.	0.6	76
28	Toll-like receptor signaling pathway in chronic lymphocytic leukemia: distinct gene expression profiles of potential pathogenic significance in specific subsets of patients. Haematologica, 2011, 96, 1644-1652.	1.7	73
29	Higher-order connections between stereotyped subsets: implications for improved patient classification in CLL. Blood, 2021, 137, 1365-1376.	0.6	72
30	Evidence for the significant role of immunoglobulin light chains in antigen recognition and selection in chronic lymphocytic leukemia. Blood, 2009, 113, 403-411.	0.6	71
31	Not all IGHV3-21 chronic lymphocytic leukemias are equal: prognostic considerations. Blood, 2015, 125, 856-859.	0.6	70
32	Quality control and quantification in IG/TR next-generation sequencing marker identification: protocols and bioinformatic functionalities by EuroClonality-NGS. Leukemia, 2019, 33, 2254-2265.	3.3	70
33	Molecular insights into the immunopathogenesis of follicular lymphoma. Trends in Immunology, 2000, 21, 298-305.	7.5	66
34	Toll-like receptors signaling: A complex network for NF-l̂ºB activation in B-cell lymphoid malignancies. Seminars in Cancer Biology, 2016, 39, 15-25.	4.3	65
35	Extensive intraclonal diversification in a subgroup of chronic lymphocytic leukemia patients with stereotyped IGHV4-34 receptors: implications for ongoing interactions with antigen. Blood, 2009, 114, 4460-4468.	0.6	64
36	High-Throughput Immunogenetics for Clinical and Research Applications in Immunohematology: Potential and Challenges. Journal of Immunology, 2017, 198, 3765-3774.	0.4	61

#	Article	IF	Citations
37	NF- \hat{l}^o B activation in chronic lymphocytic leukemia: A point of convergence of external triggers and intrinsic lesions. Seminars in Cancer Biology, 2016, 39, 40-48.	4.3	60
38	Distinct Innate Immunity Pathways to Activation and Tolerance in Subgroups of Chronic Lymphocytic Leukemia with Distinct Immunoglobulin Receptors. Molecular Medicine, 2012, 18, 1281-1291.	1.9	58
39	Targeted next-generation sequencing in chronic lymphocytic leukemia: a high-throughput yet tailored approach will facilitate implementation in a clinical setting. Haematologica, 2015, 100, 370-376.	1.7	57
40	Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors. Haematologica, 2016, 101, 959-967.	1.7	57
41	COVID-19 severity and mortality in patients with CLL: an update of the international ERIC and Campus CLL study. Leukemia, 2021, 35, 3444-3454.	3.3	57
42	Follicular lymphoma immunoglobulin κ light chains are affected by the antigen selection process, but to a lesser degree than their partner heavy chains. British Journal of Haematology, 1997, 96, 132-146.	1.2	56
43	<i> IGLV3-21 <i>*</i> 01 </i> is an inherited risk factor for CLL through the acquisition of a single-point mutation enabling autonomous BCR signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4320-4327.	3.3	55
44	Splenic Marginal-zone Lymphoma: One or More Entities? A Histologic, Immunohistochemical, and Molecular Study of 42 Cases. American Journal of Surgical Pathology, 2007, 31, 438-446.	2.1	52
45	Bone Marrow Histopathology in the Diagnostic Evaluation of Splenic Marginal-zone and Splenic Diffuse Red Pulp Small B-cell Lymphoma. American Journal of Surgical Pathology, 2012, 36, 1609-1618.	2.1	52
46	Splenic diffuse red pulp small B-cell lymphoma displays increased expression of cyclin D3 and recurrent CCND3 mutations. Blood, 2017, 129, 1042-1045.	0.6	52
47	Targeting the LYN/HS1 signaling axis in chronic lymphocytic leukemia. Blood, 2013, 121, 2264-2273.	0.6	50
48	Excessive antigen reactivity may underlie the clinical aggressiveness of chronic lymphocytic leukemia stereotyped subset #8. Blood, 2015, 125, 3580-3587.	0.6	49
49	Immunogenetic Studies of Chronic Lymphocytic Leukemia: Revelations and Speculations about Ontogeny and Clinical Evolution. Cancer Research, 2014, 74, 4211-4216.	0.4	47
50	Highly similar genomic landscapes in monoclonal B-cell lymphocytosis and ultra-stable chronic lymphocytic leukemia with low frequency of driver mutations. Haematologica, 2018, 103, 865-873.	1.7	47
51	Differential microRNA Profiles and Their Functional Implications in Different Immunogenetic Subsets of Chronic Lymphocytic Leukemia. Molecular Medicine, 2013, 19, 115-123.	1.9	46
52	Immunoglobulin Heavy- And Light-chain Repertoire in Splenic Marginal Zone Lymphoma. Molecular Medicine, 2004, 10, 89-95.	1.9	44
53	Prognostic impact of prevalent chronic lymphocytic leukemia stereotyped subsets: analysis within prospective clinical trials of the German CLL Study Group (GCLLSG). Haematologica, 2020, 105, 2598-2607.	1.7	44
54	High-density screening reveals a different spectrum of genomic aberrations in chronic lymphocytic leukemia patients with 'stereotyped' IGHV3-21 and IGHV4-34 B-cell receptors. Haematologica, 2010, 95, 1519-1525.	1.7	43

#	Article	IF	Citations
55	ARResT/AssignSubsets: a novel application for robust subclassification of chronic lymphocytic leukemia based on B cell receptor IG stereotypy. Bioinformatics, 2015, 31, 3844-3846.	1.8	43
56	Clinical impact of recurrently mutated genes on lymphoma diagnostics: state-of-the-art and beyond. Haematologica, 2016, 101, 1002-1009.	1.7	43
57	Antigen Selection Shapes the T-cell Repertoire in Chronic Lymphocytic Leukemia. Clinical Cancer Research, 2016, 22, 167-174.	3.2	43
58	Genomic arrays identify high-risk chronic lymphocytic leukemia with genomic complexity: a multi-center study. Haematologica, 2020, 106, 87-97.	1.7	43
59	A key role for EZH2 in epigenetic silencing of HOX genes in mantle cell lymphoma. Epigenetics, 2013, 8, 1280-1288.	1.3	42
60	Ofatumumab in poor-prognosis chronic lymphocytic leukemia: a Phase IV, non-interventional, observational study from the European Research Initiative on Chronic Lymphocytic Leukemia. Haematologica, 2015, 100, 511-516.	1.7	42
61	Tailored approaches grounded on immunogenetic features for refined prognostication in chronic lymphocytic leukemia. Haematologica, 2019, 104, 360-369.	1.7	42
62	Clinical, immunophenotypic, and molecular profiling of trisomy 12 in chronic lymphocytic leukemia and comparison with other karyotypic subgroups defined by cytogenetic analysis. Cancer Genetics and Cytogenetics, 2006, 168, 109-119.	1.0	41
63	Triggering interferon signaling in T cells with avadomide sensitizes CLL to anti-PD-L1/PD-1 immunotherapy. Blood, 2021, 137, 216-231.	0.6	40
64	<i>KIBRA</i> gene methylation is associated with unfavorable biological prognostic parameters in chronic lymphocytic leukemia. Epigenetics, 2012, 7, 211-215.	1.3	39
65	Somatic hypermutation of immunoglobulin variable region genes: focus on follicular lymphoma and multiple myeloma. Immunological Reviews, 1998, 162, 281-292.	2.8	38
66	Antigen selection in B-cell lymphomasâ€"Tracing the evidence. Seminars in Cancer Biology, 2013, 23, 399-409.	4.3	38
67	Distinct transcriptional control in major immunogenetic subsets of chronic lymphocytic leukemia exhibiting subset-biased global DNA methylation profiles. Epigenetics, 2012, 7, 1435-1442.	1.3	37
68	Additional trisomies amongst patients with chronic lymphocytic leukemia carrying trisomy 12: the accompanying chromosome makes a difference. Haematologica, 2016, 101, e299-e302.	1.7	35
69	Comprehensive translocation and clonality detection in lymphoproliferative disorders by next-generation sequencing. Haematologica, 2017, 102, e57-e60.	1.7	35
70	Recurrent cytogenetic findings in subsets of patients with chronic lymphocytic leukemia expressing lgG-switched stereotyped immunoglobulins. Haematologica, 2008, 93, 473-474.	1.7	34
71	Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: the 2022 update of the recommendations by ERIC, the European Research Initiative on CLL. Leukemia, 2022, 36, 1961-1968.	3.3	34
72	Rituximab-associated immune myelopathy. Blood, 2003, 102, 1557-1558.	0.6	33

#	Article	IF	Citations
73	Distinct gene expression profiles in subsets of chronic lymphocytic leukemia expressing stereotyped IGHV4-34 B-cell receptors. Haematologica, 2010, 95, 2072-2079.	1.7	33
74	Pretransplant Genetic Susceptibility: Clinical Relevance in Transplant-Associated Thrombotic Microangiopathy. Thrombosis and Haemostasis, 2020, 120, 638-646.	1.8	33
75	Prognostic relevance of MYD88 mutations in CLL: the jury is still out. Blood, 2015, 126, 1043-1044.	0.6	32
76	T Cells in Chronic Lymphocytic Leukemia: A Two-Edged Sword. Frontiers in Immunology, 2020, 11, 612244.	2.2	31
77	Transferrin receptor-1 and 2 expression in chronic lymphocytic leukemia. Leukemia Research, 2006, 30, 183-189.	0.4	30
78	B Cell Anergy Modulated by TLR1/2 and the miR-17â ¹ /492 Cluster Underlies the Indolent Clinical Course of Chronic Lymphocytic Leukemia Stereotyped Subset #4. Journal of Immunology, 2016, 196, 4410-4417.	0.4	30
79	A Systematic Search Into The Role Of IGHV Gene Replacement In Shaping The Immunoglobulin Repertoire Of Chronic Lymphocytic Leukemia. Blood, 2013, 122, 4129-4129.	0.6	30
80	Karyotypic complexity rather than chromosome 8 abnormalities aggravates the outcome of chronic lymphocytic leukemia patients with <i>TP53</i> aberrations. Oncotarget, 2016, 7, 80916-80924.	0.8	29
81	Immunoglobulin gene analysis in chronic lymphocytic leukemia in the era of next generation sequencing. Leukemia, 2020, 34, 2545-2551.	3.3	29
82	Primary vitreoretinal lymphomas display a remarkably restricted immunoglobulin gene repertoire. Blood Advances, 2020, 4, 1357-1366.	2.5	29
83	The histone methyltransferase EZH2 as a novel prosurvival factor in clinically aggressive chronic lymphocytic leukemia. Oncotarget, 2016, 7, 35946-35959.	0.8	29
84	Molecular analysis of bcl-1/lgH junctional sequences in mantle cell lymphoma: potential mechanism of the t(11;14) chromosomal translocation. British Journal of Haematology, 1999, 105, 190-197.	1.2	28
85	Immunoglobulin genes in chronic lymphocytic leukemia: key to understanding the disease and improving risk stratification. Haematologica, 2017, 102, 968-971.	1.7	28
86	IgG-Switched CLL Has a Distinct Immunogenetic Signature from the Common MD Variant: Ontogenetic Implications. Clinical Cancer Research, 2014, 20, 323-330.	3.2	27
87	Chronic Lymphocytic Leukemia with Mutated IGHV4-34 Receptors: Shared and Distinct Immunogenetic Features and Clinical Outcomes. Clinical Cancer Research, 2017, 23, 5292-5301.	3.2	27
88	B Cell Receptor Immunogenetics in B Cell Lymphomas: Immunoglobulin Genes as Key to Ontogeny and Clinical Decision Making. Frontiers in Oncology, 2020, 10, 67.	1.3	26
89	Molecular evidence for transferrin receptor 2 expression in all FAB subtypes of acute myeloid leukemia. Leukemia Research, 2003, 27, 1101-1103.	0.4	25
90	Diseaseâ€biased and shared characteristics of the immunoglobulin gene repertoires in marginal zone B cell lymphoproliferations. Journal of Pathology, 2019, 247, 416-421.	2.1	25

#	Article	IF	Citations
91	Myeloid-derived suppressor cell subtypes differentially influence T-cell function, T-helper subset differentiation, and clinical course in CLL. Leukemia, 2021, 35, 3163-3175.	3.3	25
92	EZH2 upregulates the PI3K/AKT pathway through IGF1R and MYC in clinically aggressive chronic lymphocytic leukaemia. Epigenetics, 2019, 14, 1125-1140.	1.3	24
93	Integrated epigenomic and transcriptomic analysis reveals <i>TP63</i> as a novel player in clinically aggressive chronic lymphocytic leukemia. International Journal of Cancer, 2019, 144, 2695-2706.	2.3	24
94	Heterogeneous Functional Effects of Concomitant B Cell Receptor and TLR Stimulation in Chronic Lymphocytic Leukemia with Mutated versus Unmutated Ig Genes. Journal of Immunology, 2014, 192, 4518-4524.	0.4	23
95	Stereotyped B Cell Receptors in B Cell Leukemias and Lymphomas. Methods in Molecular Biology, 2013, 971, 135-148.	0.4	22
96	Stereotyped B-cell receptors in chronic lymphocytic leukemia. Leukemia and Lymphoma, 2014, 55, 2252-2261.	0.6	21
97	Higher-order immunoglobulin repertoire restrictions in CLL: the illustrative case of stereotyped subsets 2 and 169. Blood, 2021, 137, 1895-1904.	0.6	21
98	Immunoglobulin heavy variable (IGHV) genes and alleles: new entities, new names and implications for research and prognostication in chronic lymphocytic leukaemia. Immunogenetics, 2015, 67, 61-66.	1.2	20
99	Restricted T cell receptor repertoire in CLL-like monoclonal B cell lymphocytosis and early stage CLL. Oncolmmunology, 2018, 7, e1432328.	2.1	20
100	t(14;18) chromosomal translocation in follicular lymphoma: an event occurring with almost equal frequency both at the D to JH and at later stages in the rearrangement process of the immunoglobulin heavy chain gene locus. British Journal of Haematology, 1997, 99, 866-872.	1.2	19
101	Toll-like receptor stimulation in splenic marginal zone lymphoma can modulate cell signaling, activation and proliferation. Haematologica, 2015, 100, 1460-1468.	1.7	19
102	Innovation in the prognostication of chronic lymphocytic leukemia: how far beyond TP53 gene analysis can we go?. Haematologica, 2016, 101, 263-265.	1.7	19
103	Immunoglobulin genes in multiple myeloma: expressed and non-expressed repertoires, heavy and light chain pairings and somatic mutation patterns in a series of 101 cases. Haematologica, 2006, 91, 781-7.	1.7	19
104	IMMUNOGLOBULIN GENE REPERTOIRE IN CHRONIC LYMPHOCYTIC LEUKEMIA: INSIGHT INTO ANTIGEN SELECTION AND MICROENVIRONMENTAL INTERACTIONS. Mediterranean Journal of Hematology and Infectious Diseases, 2012, 4, e2012052.	0.5	18
105	Three-dimensional co-culture model of chronic lymphocytic leukemia bone marrow microenvironment predicts patient-specific response to mobilizing agents. Haematologica, 2021, 106, 2334-2344.	1.7	18
106	T-Cell Dynamics in Chronic Lymphocytic Leukemia under Different Treatment Modalities. Clinical Cancer Research, 2020, 26, 4958-4969.	3.2	18
107	The frequency of <i><scp>TP</scp>53</i> gene defects differs between chronic lymphocytic leukaemia subgroups harbouring distinct antigen receptors. British Journal of Haematology, 2014, 166, 621-625.	1.2	17
108	An Immunogenetic Signature of Ongoing Antigen Interactions in Splenic Marginal Zone Lymphoma Expressing IGHV1-2*04 Receptors. Clinical Cancer Research, 2016, 22, 2032-2040.	3.2	17

#	Article	IF	Citations
109	Implementation of HPV-based Cervical Cancer Screening Combined with Self-sampling Using a Midwifery Network Across Rural Greece: The GRECOSELF Study. Cancer Prevention Research, 2019, 12, 701-710.	0.7	17
110	Stereotyped B Cell Receptor Immunoglobulins in B Cell Lymphomas. Methods in Molecular Biology, 2019, 1956, 139-155.	0.4	17
111	Tracing CLL-biased stereotyped immunoglobulin gene rearrangements in normal B cell subsets using a high-throughput immunogenetic approach. Molecular Medicine, 2020, 26, 25.	1.9	17
112	Cytogenetics in Chronic Lymphocytic Leukemia: ERIC Perspectives and Recommendations. HemaSphere, 2022, 6, e707.	1.2	17
113	T-cell receptor $\hat{Vl^2}$ repertoire analysis in patients with chronic idiopathic neutropenia demonstrates the presence of aberrant T-cell expansions. Clinical Immunology, 2010, 137, 384-395.	1.4	16
114	Unlocking the secrets of immunoglobulin receptors in mantle cell lymphoma: Implications for the origin and selection of the malignant cells. Seminars in Cancer Biology, 2011, 21, 299-307.	4.3	16
115	Expression of Immunoglobulin Receptors with Distinctive Features Indicating Antigen Selection by Marginal Zone B Cells from Human Spleen. Molecular Medicine, 2013, 19, 294-302.	1.9	16
116	ATM mutations in major stereotyped subsets of chronic lymphocytic leukemia: enrichment in subset #2 is associated with markedly short telomeres. Haematologica, 2016, 101, e369-e373.	1.7	16
117	No improvement in long-term survival over time for chronic lymphocytic leukemia patients in stereotyped subsets #1 and #2 treated with chemo(immuno)therapy. Haematologica, 2018, 103, e158-e161.	1.7	16
118	Stability of Conversion Factors for BCR-ABL Monitoring -– Implications for the Frequency of Validation Rounds. Blood, 2010, 116, 893-893.	0.6	16
119	Evidence for sinoatrial blockade associated with high dose cytarabine therapy. Leukemia Research, 1998, 22, 759-761.	0.4	15
120	Molecular Analysis of Immunoglobulin Genes in Multiple Myeloma. Leukemia and Lymphoma, 1999, 33, 253-265.	0.6	15
121	Analysis of Expressed and Non-Expressed IGK Locus Rearrangements in Chronic Lymphocytic Leukemia. Molecular Medicine, 2005, $11,52-58$.	1.9	15
122	Activation-induced cytidine deaminase splicing patterns in chronic lymphocytic leukemia. Blood Cells, Molecules, and Diseases, 2010, 44, 262-267.	0.6	15
123	DNA methylation profiles in chronic lymphocytic leukemia patients treated with chemoimmunotherapy. Clinical Epigenetics, 2019, 11, 177.	1.8	15
124	Control of PD-L1 expression in CLL-cells by stromal triggering of the Notch-c-Myc-EZH2 oncogenic signaling axis., 2021, 9, e001889.		15
125	Binding of CLL Subset 4 B Cell Receptor Immunoglobulins to Viable Human Memory B Lymphocytes Requires a Distinctive IGKV Somatic Mutation. Molecular Medicine, 2017, 23, 1-12.	1.9	14
126	Mantle cell lymphoma displays a homogenous methylation profile: A comparative analysis with chronic lymphocytic leukemia. American Journal of Hematology, 2012, 87, 361-367.	2.0	13

#	Article	IF	Citations
127	The Significance of Stereotyped B-Cell Receptors in Chronic Lymphocytic Leukemia. Hematology/Oncology Clinics of North America, 2013, 27, 237-250.	0.9	13
128	Molecular Evidence for Antigen Drive in the Natural History of Mantle Cell Lymphoma. American Journal of Pathology, 2015, 185, 1740-1748.	1.9	13
129	Precision diagnostics in lymphomas – Recent developments and future directions. Seminars in Cancer Biology, 2022, 84, 170-183.	4.3	13
130	Immunoglobulin kappa gene repertoire and somatic hypermutation patterns in follicular lymphoma. Blood Cells, Molecules, and Diseases, 2008, 41, 215-218.	0.6	12
131	Clonal B-cell lymphocytosis of marginal zone origin. Best Practice and Research in Clinical Haematology, 2017, 30, 77-83.	0.7	12
132	Monoclonal B-cell lymphocytosis in a hospital-based UK population and a rural Ugandan population: a cross-sectional study. Lancet Haematology,the, 2017, 4, e334-e340.	2.2	12
133	<i>RPS15</i> mutations rewire RNA translation in chronic lymphocytic leukemia. Blood Advances, 2021, 5, 2788-2792.	2.5	12
134	Partial versus Productive Immunoglobulin Heavy Locus Rearrangements in Chronic Lymphocytic Leukemia: Implications for B-Cell Receptor Stereotypy. Molecular Medicine, 2012, 18, 138-145.	1.9	11
135	Temporal Dynamics of Clonal Evolution in Chronic Lymphocytic Leukemia with Stereotyped IGHV4-34/IGKV2-30 Antigen Receptors: Longitudinal Immunogenetic Evidence. Molecular Medicine, 2013, 19, 230-236.	1.9	11
136	Chronic Lymphocytic Leukemia Patients Have a Preserved Cytomegalovirus-Specific Antibody Response despite Progressive Hypogammaglobulinemia. PLoS ONE, 2013, 8, e78925.	1.1	11
137	Splenic marginal-zone lymphoma: ontogeny and genetics. Leukemia and Lymphoma, 2015, 56, 301-310.	0.6	11
138	Numerous Ontogenetic Roads to Mantle Cell Lymphoma. American Journal of Pathology, 2017, 187, 1454-1458.	1.9	11
139	Chronic lymphocytic leukemias with trisomy 12 show a distinct DNA methylation profile linked to altered chromatin activation. Haematologica, 2020, 105, 2864-2867.	1.7	11
140	TRIP - T cell receptor/immunoglobulin profiler. BMC Bioinformatics, 2020, 21, 422.	1.2	11
141	Expression of recombination activating genes-1 and-2 immunoglobulin heavy chain gene rearrangements in acute myeloid leukemia: evaluation of biological and clinical significance in a series of 76 uniformly treated patients and review of the literature. Haematologica, 2003, 88, 268-74.	1.7	11
142	Autoimmune hemolytic anemia during \hat{l}_{\pm} -interferon treatment in a patient with chronic myelogenous leukemia. Leukemia Research, 2001, 25, 1097-1098.	0.4	10
143	Calreticulin as a novel B-cell receptor antigen in chronic lymphocytic leukemia. Haematologica, 2017, 102, e394-e396.	1.7	10
144	Inhibition of EZH2 and immune signaling exerts synergistic antitumor effects in chronic lymphocytic leukemia. Blood Advances, 2019, 3, 1891-1896.	2.5	10

#	Article	IF	Citations
145	Acceptability of Self-Sampling for Human Papillomavirus-Based Cervical Cancer Screening. Journal of Women's Health, 2020, 29, 1447-1456.	1.5	10
146	Comparative analysis of targeted next-generation sequencing panels for the detection of gene mutations in chronic lymphocytic leukemia: an ERIC multi-center study. Haematologica, 2021, 106, 682-691.	1.7	10
147	Understanding Monoclonal B Cell Lymphocytosis: An Interplay of Genetic and Microenvironmental Factors. Frontiers in Oncology, 2021, 11, 769612.	1.3	10
148	Transient monoclonal CD3+ T large granular lymphocyte proliferation in a case of mantle cell lymphoma with Rituximab-associated late onset neutropenia. Hematological Oncology, 2011, 29, 144-146.	0.8	9
149	Silenced B-cell receptor response to autoantigen in a poor-prognostic subset of chronic lymphocytic leukemia. Haematologica, 2014, 99, 1722-1730.	1.7	9
150	The inhibitory receptor toll interleukin-1R 8 (TIR8/IL-1R8/SIGIRR) is downregulated in chronic lymphocytic leukemia. Leukemia and Lymphoma, 2017, 58, 2419-2425.	0.6	9
151	Automated shape-based clustering of 3D immunoglobulin protein structures in chronic lymphocytic leukemia. BMC Bioinformatics, 2018, 19, 414.	1.2	9
152	MyPal-Child study protocol: an observational prospective clinical feasibility study of the MyPal ePRO-based early palliative care digital system in paediatric oncology patients. BMJ Open, 2021, 11, e045226.	0.8	9
153	The Genomics of Hairy Cell Leukaemia and Splenic Diffuse Red Pulp Lymphoma. Cancers, 2022, 14, 697.	1.7	9
154	Large Granular Lymphocyte Leukemia After Renal Transplantation: An Immunologic, Immunohistochemical, and Genotypic Study. Transplantation, 2007, 83, 102-103.	0.5	8
155	Familial CD3 ⁺ T large granular lymphocyte leukemia: evidence that genetic predisposition and antigen selection promote clonal cytotoxic T-cell responses. Leukemia and Lymphoma, 2014, 55, 1781-1787.	0.6	8
156	Increased frequency of the single nucleotide polymorphism of the <i><scp>DARC</scp>/<scp>ACKR1</scp></i> gene associated with ethnic neutropenia in a cohort of European patients with chronic idiopathic neutropenia. American Journal of Hematology, 2020, 95, E163-E166.	2.0	8
157	Infrequent "chronic lymphocytic leukemia-specific―immunoglobulin stereotypes in aged individuals with or without low-count monoclonal B-cell lymphocytosis. Haematologica, 2021, 106, 1178-1181.	1.7	8
158	A novel ex vivo high-throughput assay reveals antiproliferative effects of idelalisib and ibrutinib in chronic lymphocytic leukemia. Oncotarget, 2018, 9, 26019-26031.	0.8	8
159	MyPal ADULT study protocol: a randomised clinical trial of the MyPal ePRO-based early palliative care system in adult patients with haematological malignancies. BMJ Open, 2021, 11, e050256.	0.8	8
160	Distinctive Signaling Profiles With Distinct Biological and Clinical Implications in Aggressive CLL Subsets With Stereotyped B-Cell Receptor Immunoglobulin. Frontiers in Oncology, 2021, 11, 771454.	1.3	8
161	Hypereosinophilia associated with monosomy 7. Cancer Genetics and Cytogenetics, 1995, 80, 68-71.	1.0	7
162	Antigen Selection of Multiple Myeloma Clonogenic B Cells as Evidenced by VH and VL Gene Mutations. Blood, 1997, 90, 1334-1334.	0.6	7

#	Article	IF	Citations
163	Somatic Hypermutation Patterns in Germinal Center B Cell Malignancies. Hematology, 2003, 8, 319-328.	0.7	7
164	A gene is known by the company it keeps: enrichment of <i>TNFAIP3 </i> gene aberrations in MALT lymphomas expressing IGHV4-34 antigen receptors. Journal of Pathology, 2017, 243, 403-406.	2.1	7
165	IRProfiler – a software toolbox for high throughput immune receptor profiling. BMC Bioinformatics, 2018, 19, 144.	1.2	7
166	Antigens in CLL: themes and variations. Blood, 2010, 115, 3855-3856.	0.6	6
167	Antigens in lymphoma developmentâ€"Current knowledge and future directions. Seminars in Cancer Biology, 2013, 23, 397-398.	4.3	6
168	The role of bone marrow biopsy examination at diagnosis of chronic lymphocytic leukemia: a reappraisal. Leukemia and Lymphoma, 2013, 54, 2377-2384.	0.6	6
169	Cytotoxic T cells in chronic idiopathic neutropenia express restricted antigen receptors. Leukemia and Lymphoma, 2017, 58, 2926-2933.	0.6	6
170	Immunoglobulin Gene Sequence Analysis In Chronic Lymphocytic Leukemia: From Patient Material To Sequence Interpretation. Journal of Visualized Experiments, 2018, , .	0.2	6
171	T Cell Defects and Immunotherapy in Chronic Lymphocytic Leukemia. Cancers, 2021, 13, 3255.	1.7	6
172	B Cell Receptor and Antigens in CLL. Advances in Experimental Medicine and Biology, 2013, 792, 1-24.	0.8	6
173	Immunoglobulin heavy variable somatic hyper mutation status in chronic lymphocytic leukaemia: on the threshold of a new era?. British Journal of Haematology, 2020, 189, 809-810.	1.2	6
174	T Cell Receptor Gene Repertoire Restriction in Chronic Lymphocytic Leukemia with Stereotyped IGHV4–34/IGKV2–30 Antigen Receptors. Blood, 2012, 120, 3908-3908.	0.6	6
175	Subset-Specific Spectra of Recurrent Gene Mutations in Chronic Lymphocytic Leukemia with Stereotyped B-Cell Receptors. Blood, 2014, 124, 3320-3320.	0.6	6
176	Molecular demonstration of BCR/ABL fusion in two cases with chronic myeloproliferative disorder carrying variant Philadelphia $t(14;22)(q32;q11)$. Cancer Genetics and Cytogenetics, 1996, 91, 82-87.	1.0	5
177	Translocation $t(2;7)(p11.2;q21.2)$: a rare genetic aberration associated with B-cell lymphoproliferative disorders of marginal-zone origin. Cancer Genetics, 2014, 207, 281-283.	0.2	5
178	Different time-dependent changes of risk for evolution in chronic lymphocytic leukemia with mutated or unmutated antigen B cell receptors. Leukemia, 2019, 33, 1801-1805.	3.3	5
179	Skewing of the T-cell receptor repertoire in patients receiving rituximab after allogeneic hematopoietic cell transplantation: what lies beneath?. Leukemia and Lymphoma, 2019, 60, 1685-1692.	0.6	5
180	Exploiting B-cell Receptor Stereotypy to Design Tailored Immunotherapy in Chronic Lymphocytic Leukemia. Clinical Cancer Research, 2021, 27, 729-739.	3.2	5

#	Article	IF	Citations
181	MyPal: Designing and Evaluating Digital Patient-Reported Outcome Systems for Cancer Palliative Care in Europe. Journal of Palliative Medicine, 2021, 24, 962-964.	0.6	5
182	Remarkable Functional Constraints on the Antigen Receptors of CLL Stereotyped Subset #2: High-Throughput Immunogenetic Evidence. Blood, 2018, 132, 1839-1839.	0.6	5
183	Reverse transcription polymerase chain reaction for the diagnosis and molecular monitoring of the PML/RARα fusion gene in acute promyelocytic leukemia. Cancer Genetics and Cytogenetics, 1995, 84, 91-94.	1.0	4
184	Predominantly post-transcriptional regulation of activation molecules in chronic lymphocytic leukemia: The case of transferrin receptors. Blood Cells, Molecules, and Diseases, 2008, 41, 203-209.	0.6	4
185	An Entity Evolving into a Community: Defining the Common Ancestor and Evolutionary Trajectory of Chronic Lymphocytic Leukemia Stereotyped Subset #4. Molecular Medicine, 2014, 20, 720-728.	1.9	4
186	AEGLE: A big bio-data analytics framework for integrated health-care services. , 2015, , .		4
187	B-cell malignancies: All roads lead to NF-κB activation. Seminars in Cancer Biology, 2016, 39, 1-2.	4.3	4
188	Chronic Lymphocytic Leukemia Patient Clustering Based on Somatic Hypermutation (SHM) Analysis. Advances in Experimental Medicine and Biology, 2017, 988, 127-138.	0.8	4
189	Dichotomous Toll-like receptor responses in chronic lymphocytic leukemia patients under ibrutinib treatment. Leukemia, 2019, 33, 1030-1051.	3.3	4
190	Stem cell factor is implicated in microenvironmental interactions and cellular dynamics of chronic lymphocytic leukemia. Haematologica, 2021, 106, 692-700.	1.7	4
191	Euroclonality-NGS DNA Capture Panel for Integrated Analysis of IG/TR Rearrangements, Translocations, Copy Number and Sequence Variation in Lymphoproliferative Disorders. Blood, 2019, 134, 888-888.	0.6	4
192	Promiscuous Antigen Reactivity May Underlie Clinical Aggressiveness and Increased Risk for Richter's Syndrome in Chronic Lymphocytic Leukemia with Stereotyped IGHV4-39/IGKV1(D)-39 B Cell Receptors. Blood, 2012, 120, 561-561.	0.6	4
193	Revisiting Hypogammaglobulinemia in Chronic Lymphocytic Leukemia: A Combined Clinicobiological Approach. Blood, 2014, 124, 5633-5633.	0.6	4
194	Distinct Immunogenetic Signatures in IgA Versus IgG Multiple Myeloma. Blood, 2016, 128, 2062-2062.	0.6	4
195	T cells in chronic lymphocytic leukemia: can they fight?. Oncotarget, 2017, 8, 99209-99210.	0.8	4
196	Report of novel chromosomal abnormalities in a series of 130 chronic lymphocytic leukemia patients studied by classic cytogenetic analysis. Leukemia and Lymphoma, 2006, 47, 2084-2087.	0.6	3
197	CLL: promiscuity leads to risks. Blood, 2009, 114, 3508-3509.	0.6	3
198	Cytotoxic T cell-mediated gastritis after rituximab treatment for gastric malt lymphoma. Leukemia and Lymphoma, 2014, 55, 702-705.	0.6	3

#	Article	IF	Citations
199	High-throughput analysis of the T cell receptor gene repertoire in low-count monoclonal B cell lymphocytosis reveals a distinct profile from chronic lymphocytic leukemia. Haematologica, 2020, 105, e515.	1.7	3
200	The Calcitriol/Vitamin D Receptor System Regulates Key Immune Signaling Pathways in Chronic Lymphocytic Leukemia. Cancers, 2021, 13, 285.	1.7	3
201	The Significance of B-cell Receptor Stereotypy in Chronic Lymphocytic Leukemia. Hematology/Oncology Clinics of North America, 2021, 35, 687-702.	0.9	3
202	VH CDR3-Focused Somatic Hypermutation in CLL IGHV-IGHD-IGHJ Gene Rearrangements with 100% IGHV Germline Identity. Blood, 2019, 134, 4277-4277.	0.6	3
203	Chronic Lymphocytic Leukemia Patients with IGHV Genes Carrying Only Silent Mutations Have A Longer Time From Diagnosis to Initial Therapy Than Patients Expressing B-Cell Receptors with No Somatic Mutations. Blood, 2011, 118, 288-288.	0.6	3
204	Translocations and Clonality Detection in Lymphoproliferative Disorders By Capture-Based Next-Generation Sequencing. a Pilot Study By the Euroclonality-NGS Consortium. Blood, 2014, 124, 5169-5169.	0.6	3
205	CLL Stereotyped IGHV-D-J Rearrangements Can Be Detected Throughout Normal B-Cell Developmental Stages in Aged People When Using Ultra-Deep, Next Generation Sequencing Techniques. Blood, 2016, 128, 2028-2028.	0.6	3
206	A Reappraisal of the Biological and Clinical Implications of Chromosomal Translocations in Chronic Lymphocytic Leukemia. Blood, 2012, 120, 3915-3915.	0.6	3
207	Development of a ePRO-Based Palliative Care Intervention for Cancer Patients: A Participatory Design Approach. Studies in Health Technology and Informatics, 2020, 270, 941-945.	0.2	3
208	Screening for cytotoxic compounds in poor-prognostic chronic lymphocytic leukemia. Anticancer Research, 2012, 32, 3125-36.	0.5	3
209	Unusually prolonged survival of a case of acute megakaryoblastic leukemia secondary to long-standing polycythemia vera. Leukemia Research, 2002, 26, 699-700.	0.4	2
210	A unique case of IgD-only splenic marginal-zone lymphoma with mutated immunoglobulin genes: Ontogenetic implications. Leukemia Research, 2008, 32, 155-157.	0.4	2
211	<i>Tp53</i> gene p72R polymorphism in chronic lymphocytic leukemia: incidence and clinical significance amongst cases with unmutated immunoglobulin receptors. Leukemia and Lymphoma, 2017, 58, 726-728.	0.6	2
212	Study of gene expressions' correlation structures in subgroups of Chronic Lymphocytic Leukemia Patients. Journal of Biomedical Informatics, 2019, 95, 103211.	2.5	2
213	Immunoglobulin Gene Analysis in Chronic Lymphocytic Leukemia. Methods in Molecular Biology, 2019, 1881, 51-62.	0.4	2
214	Congenital and Acquired Chronic Neutropenias: Challenges, Perspectives and Implementation of the EuNetâ€INNOCHRON Action. HemaSphere, 2020, 4, e406.	1.2	2
215	Eliciting Anti-Tumor T Cell Immunity in Chronic Lymphocytic Leukemia (CLL) with PD-L1/PD-1 Blockade Is Enhanced By Avadomide Immunotherapy through the Triggering of Immunogenic Interferon Signaling. Blood, 2018, 132, 237-237.	0.6	2
216	Sequence-Based Evidence for Antigen Selection in Mantle Cell Lymphoma: Remarkable Immunoglobulin Gene Repertoire Biases, Stereotyped Antigen-Binding Sites and Recurrent Hypermutations in Certain Subsets Blood, 2009, 114, 1933-1933.	0.6	2

#	Article	IF	Citations
217	The Composition of the B Cell Receptor Repertoire In 7428 Cases of Chronic Lymphocytic Leukemia: One Third Stereotyped, Two Thirds Heterogeneous - What Does This Mean?. Blood, 2010, 116, 43-43.	0.6	2
218	Over 30% of Patients with Splenic Marginal Zone Lymphoma Express Distinctive Antigen Receptors Utilizing a Single Immunoglogulin Variable Gene: Implications for the Origin and Selection of the Neoplastic Cells. Blood, 2010, 116, 634-634.	0.6	2
219	Auto-Immune Origin of B Cells from HCV-Associated Lymphoma. Blood, 2015, 126, 1464-1464.	0.6	2
220	Unique Versus Common: Disease-Biased Immunoglobulin Gene Repertoires Along with Public Antigen Receptor Stereotypes in Marginal Zone B-Cell Lymphoproliferations. Blood, 2015, 126, 1479-1479.	0.6	2
221	Automated Clustering Analysis of Immunoglobulin Sequences in Chronic Lymphocytic Leukemia Based on 3D Structural Descriptors. Blood, 2016, 128, 4365-4365.	0.6	2
222	Chronic lymphocytic leukaemia: An immunobiology approach. Srpski Arhiv Za Celokupno Lekarstvo, 2008, 136, 319-323.	0.1	2
223	Differential Functional Outcomes After Stimulation Via Innate Immunity Receptors In Chronic Lymphocytic Leukemia Subtypes Defined by the Molecular Features of the Immunoglobulin Receptor. Blood, 2010, 116, 374-374.	0.6	2
224	Evidence for Epitope-Specific T Cell Responses in HIV-Associated Non Neoplastic Lymphadenopathy: High-Throughput Immunogenetic Evidence. Blood, 2018, 132, 1117-1117.	0.6	2
225	Longitudinal T Cell Immunoprofiling of Patients with Relapsed and/or Refractory Myeloma Who Receive Daratumumab Monotherapy: A Subanalysis of a Phase 2 Study (the REBUILD Study). Blood, 2019, 134, 3167-3167.	0.6	2
226	Challenges and Solutions for Collecting and Analyzing Real World Data: The Eric CLL Database as an Illustrative Example. HemaSphere, 2020, 4, e425.	1.2	2
227	Validation of the EuroClonality-NGS DNA capture panel as an integrated genomic tool for lymphoproliferative disorders. Blood Advances, 2021, 5, 3188-3198.	2.5	2
228	The Clonotypic BCR IG of CLL Patients Contain Predicted T-Cell Class I Epitopes with Shared Structural Properties. Blood, 2021, 138, 1540-1540.	0.6	2
229	Worldwide Examination of Patients with CLL Hospitalized for COVID-19. Blood, 2020, 136, 45-49.	0.6	2
230	Impact of the Types and Relative Quantities of IGHV Gene Mutations in Predicting Prognosis of Patients With Chronic Lymphocytic Leukemia. Frontiers in Oncology, 0, 12, .	1.3	2
231	A novel chromosomal abnormality involving chromosomes 2 and 18 in a patient with myelodysplastic syndrome. Cancer Genetics and Cytogenetics, 1997, 96, 7-12.	1.0	1
232	Glycosylation of V region genes in follicular lymphoma as a result of the somatic hypermutation mechanism. Blood, 2002, 100 , 2269 - 2270 .	0.6	1
233	Absence of Somatic Hypermutation in the Open Reading Frame of the Bcl-2 Gene Participating in the $t(14;18)$ Chromosomal Translocation in Follicular Lymphoma. Leukemia and Lymphoma, 2002, 43, 2391-2393.	0.6	1
234	A Structural Equation Modeling Approach of the Toll-Like Receptor Signaling Pathway in Chronic Lymphocytic Leukemia. , 2013 , , .		1

#	Article	IF	Citations
235	Integrating multiple immunogenetic data sources for feature extraction and mining somatic hypermutation patterns: the case of "towards analysis―in chronic lymphocytic leukaemia. BMC Bioinformatics, 2016, 17, 173.	1.2	1
236	TAp63 and BCL2 expression are co-affected by cell-extrinsic signals in chronic lymphocytic leukemia. Leukemia and Lymphoma, 2021, 62, 1-4.	0.6	1
237	RPS15 mutations Repress mRNA Translation in Chronic Lymphocytic Leukemia Cells. Blood, 2018, 132, 1843-1843.	0.6	1
238	Immunoglobulin Light Chain Repertoire in Chronic Lymphocytic Leukemia (CLL): Recognition of Subsets with "CLL-Specific―CDR3 Regions and Associations with Heavy Chains Blood, 2004, 104, 769-769.	0.6	1
239	Analysis of Non-Expressed IGK Locus Rearrangements in Chronic Lymphocytic Leukemia Indicates a Role for Secondary Rearrangements in Shaping the Expressed Immunoglobulin Repertoire Blood, 2004, 104, 972-972.	0.6	1
240	Evidence for Antigen-Driven Development of Molecularly Classified Burkitt Lymphomas Blood, 2009, 114, 317-317.	0.6	1
241	Monoclonal B-Cell Lymphocytosis Exhibiting Immunophenotypic Features Consistent with Marginal Zone Origin: What Is This Entity?. Blood, 2012, 120, 1587-1587.	0.6	1
242	Differential Distribution Of Recurrent Gene Mutations In Subsets Of Chronic Lymphocytic Leukemia Patients With Stereotyped B-Cell Receptors: Results From A Multicenter Project Of The European Research Initiative On CLL In A Series Of 2482 Cases. Blood, 2013, 122, 4113-4113.	0.6	1
243	High-Throughput Profiling of the T-Cell Receptor Gene Repertoire Supports Antigen Drive in the Pathogenesis of Chronic Idiopathic Neutropenia. Blood, 2014, 124, 2731-2731.	0.6	1
244	Next Generation Sequence Immunoprofiling of the T-Cell Repertoire in Chronic Lymphocytic Leukemia Supports Selection By Shared Antigenic Elements. Blood, 2015, 126, 618-618.	0.6	1
245	Longitudinal Assessment of CLL Patients Under Ibrutinib Treatment Reveals Maintained Capacity to Respond to Microenvironmental Stimuli through the Toll-like Receptors. Blood, 2016, 128, 2025-2025.	0.6	1
246	In CLL, Myeloid-Derived Suppressor Cells and Their Monocytic and Granulocytic Varieties Differ in T-Cell Subset Association and Polarization Induction. Blood, 2016, 128, 4350-4350.	0.6	1
247	Reappraising Immunoglobulin Repertoire Restrictions in Chronic Lymphocytic Leukemia: Focus on Major Stereotyped Subsets and Closely Related Satellites. Blood, 2016, 128, 4376-4376.	0.6	1
248	Somatic Hypermutation In Stereotyped Subset 4 BCRs/mAbs of CLL Patients, Expressing IGHV4-34 gene, Edit Anti-DNA Reactivity. Blood, 2010, 116, 2444-2444.	0.6	1
249	Toll-Like Receptor Signaling Pathway In Chronic Lymphocytic Leukemia: Distinct Gene Expression Profiles of Potential Pathogenetic Significance In Specific Subsets of Patients. Blood, 2010, 116, 44-44.	0.6	1
250	SNP-Arrays Provide New Insights Into the Pathogenesis of Richter Syndrome (RS). Blood, 2011, 118, 263-263.	0.6	1
251	Distinct Profiles of in Vivo Class Switch Recombination in Chronic Lymphocytic Leukemia Subsets with Stereotyped B Cell Receptors, Suggestive of Distinct Modes of Activation by Antigen. Blood, 2012, 120, 1777-1777.	0.6	1
252	B-Cell Anergy Underlies Indolent Clinical Behavior Of CLL Stereotyped Subset #4. Blood, 2013, 122, 4115-4115.	0.6	1

#	Article	IF	CITATIONS
253	Deep-Sequencing Reveals the Molecular Landscape of Splenic Marginal Zone Lymphoma: Biological and Clinical Implications. Blood, 2014, 124, 76-76.	0.6	1
254	Higher Order Restrictions of the Immunoglobulin Repertoire in CLL: The Illustrative Case of Stereotyped Subsets #2 and #169. Blood, 2019, 134, 5453-5453.	0.6	1
255	Changes in N-Glycosylation Induced By Somatic Hypermutation Modulate the Antigen Reactivity of the Immunoglobulin Receptors in CLL Stereotyped Subset #201. Blood, 2019, 134, 1733-1733.	0.6	1
256	Different Prognostic Impact of Recurrent Gene Mutations in IGHV-Mutated and IGHV-Unmutated Chronic Lymphocytic Leukemia: A Retrospective, Multi-Center Cohort Study By Eric, the European Research Initiative on CLL, in Harmony. Blood, 2021, 138, 2617-2617.	0.6	1
257	T Cell Immunoprofiling of Patients with Relapsed and/or Refractory Myeloma Who Receive Daratumumab Monotherapy: Longitudinal Analysis during 7 Cycle Follow-up of the Rebuild Phase 2 Study. Blood, 2020, 136, 28-28.	0.6	1
258	The TÎ ⁺ p63/BCL2 axis represents a novel mechanism of clinical aggressiveness in chronic lymphocytic leukemia. Blood Advances, 2022, 6, 2646-2656.	2.5	1
259	The EHA Research Roadmap: Malignant Lymphoid Diseases. HemaSphere, 2022, 6, e726.	1.2	1
260	Diffuse hepatic calcinosis and hypercalcemia in association with a B-cell (centroblastic) lymphoma. American Journal of Hematology, 1995, 50, 67-67.	2.0	O
261	Coexistence of different types of biallelic immunoglobulin heavy variable gene replacement events in a case of pediatric B precursor acute lymphoblastic leukemia. Leukemia and Lymphoma, 2010, 51, 1748-1750.	0.6	O
262	Studies of Rearrangements and Somatic Hypermutation of IGHV Genes in Chronic Lymphocytic Leukemia. Principles and Practice, 2012, , 429-442.	0.3	0
263	Towards an integrated framework for clinico-biological data management and analysis: The case of Chronic Lymphocytic Leukemia. , 2013, , .		O
264	3D Protein-Structure-Oriented Discovery of Clinical Relation Across Chronic Lymphocytic Leukemia Patients. Lecture Notes in Computer Science, 2017, , 139-150.	1.0	О
265	Approaching Empowerment Holistically: are Physicians Willing And Able?. International Journal of Reliable and Quality E-Healthcare, 2019, 8, 11-22.	1.0	O
266	In CLL, epigenetics also points to the BCR. Blood, 2021, 137, 2863-2865.	0.6	0
267	Comparison of different strategies for the triage to colposcopy of women tested high-risk HPV positive on self-collected cervicovaginal samples. Gynecologic Oncology, 2021, 162, 560-568.	0.6	0
268	IG Heavy and Light Chain Variable Genes in Chronic Lymphocytic Leukemia Exhibit Distinct Somatic Mutation Patterns and a Comparable Imprint of Antigen Selection Blood, 2004, 104, 1921-1921.	0.6	0
269	Somatic Mutation Analysis of Immunoglobulin (IG) Genes in Chronic Lymphocytic Leukemia (CLL) and Comparison to Normal and Autoreactive IG Sequences Reveals CLL-Biased Patterns for Selected IG Genes Blood, 2005, 106, 1185-1185.	0.6	O
270	Nucleotide Insertions and Deletions in Chronic Lymphocytic Leukemia. A CLL Specific Deletion among IGHV3-21 Expressing Cases with Stereotyped Receptors Blood, 2005, 106, 2100-2100.	0.6	0

#	Article	IF	CITATIONS
271	Evidence for Differential Regulation of Transferrin Receptor 1 in Normal vs. Malignant B Cells Blood, 2005, 106, 3722-3722.	0.6	О
272	Splenic Marginal-Zone Lymphoma: One or More Entities? A Histological, Immunohistochemical and Molecular Study of 41 Cases Blood, 2005, 106, 4671-4671.	0.6	0
273	Differential Impact of Transcriptional vs. Post-Transcriptional Control Mechanisms in the Regulation of Transferrin Receptor-1 and -2 in Human Myeloid Cells Blood, 2006, 108, 3734-3734.	0.6	0
274	Late-Onset Neutropenia in Rituximab-Treated Lymphoma Patients: Lymphocyte Subpopulation Imbalances, Bone Marrow Hematopoiesis and Immunohistology Blood, 2007, 110, 3414-3414.	0.6	0
275	T-Cell Receptor $\hat{V^2}$ Repertoire Analysis in Patients with Chronic Idiopathic Neutropenia: Evidence for Presence of Predominant T-Cell Clones with Possible Pathogenetic Significance Blood, 2007, 110, 3302-3302.	0.6	0
276	Immunoglobulin Gene Repertoire in Ocular Adnexa Lymphomas (OAL): Hints on the Nature of the Antigenic Stimulation. Blood, 2008, 112, 623-623.	0.6	0
277	Evidence for the Significant Role of Immunoglobulin Light Chains in Antigen Recognition and Selection in Chronic Lymphocytic Leukemia. Blood, 2008, 112, 780-780.	0.6	0
278	T-Cell Receptor Complementarity Determining Region Analysis of Peripheral Blood and Bone Marrow T-Lymphocyte Subsets and Quantitative Evaluation of T-Regulatory Cells in Patients with Chronic Idiopathic Neutropenia. Blood, 2008, 112, 1260-1260.	0.6	0
279	A Different Ontogenesis for CLL Cases Carrying Stereotyped Antigen Receptors: Molecular and Computational Evidence. Blood, 2008, 112, 777-777.	0.6	0
280	The Immunoglobulin Gene Repertoire of Low-Count CLL-Like MBL Is Different from CLL: Diagnostic Considerations and Implications for Clinical Monitoring. Blood, 2008, 112, 779-779.	0.6	0
281	Histopathological EXAMINATION of BONE MARROW Biopsy (BMB) IN Primary Splenic B CELL Lymphomas of Marginal-ZONE ORIGIN (PSMZL). A Reliable Substitute for Spleen Pathology? Blood, 2009, 114, 1924-1924.	0.6	0
282	The Normal IGHV1-69-derived B Cell Repertoire Contains "Stereotypic―Patterns Characteristic of Unmutated CLL Blood, 2009, 114, 4370-4370.	0.6	0
283	Insight Into HCDR3 Restrictions in CLL by Analysis of Incomplete IGHD-IGHJ Rearrangements: Further Evidence that Somatic Selection Shapes the Expressed CLL Immunoglobulin Repertoire Blood, 2009, 114, 2346-2346.	0.6	О
284	Chronic Lymphocytic Leukemia with Stereotyped IGHV4-59/IGKV3-20 B Cell Receptors: Another Manifestation of Hepatitis C Virus-Associated B Cell Lymphoproliferation? Blood, 2009, 114, 2331-2331.	0.6	0
285	Extensive Intraclonal Diversification in a Subgroup of Chronic Lymphocytic Leukemia Patients with Stereotyped IGHV4-34/IGKV2-30 B cell Receptors: Implications for Ongoing Interactions with Antigen Blood, 2009, 114, 2337-2337.	0.6	0
286	Genome-Wide Array-Based Methylation Profiling Reveals Preferential Methylation of Homeobox Transcription Factor Genes In Mantle Cell Lymphoma and Pro-Apoptotic Genes In Chronic Lymphocytic Leukemia. Blood, 2010, 116, 536-536.	0.6	0
287	Acute Myeloid Leukemia with Coexpression of Lymphoid-Associated Antigens: Clinicobiological Associations and Prognostic Implications,. Blood, 2011, 118, 3596-3596.	0.6	0
288	Late Onset Neutropenia Develops Selectively in Only a Subset of Patients with T Large Granular Lymphocyte Proliferation After Rituximab Treatment for Lymphoma,. Blood, 2011, 118, 3675-3675.	0.6	0

#	Article	IF	Citations
289	Distinctive Patterns of Intraclonal Diversification In IGHV1-2*04 Immunoglobulin Receptors of Patients with Splenic Marginal Zone Lymphoma: A of Ongoing Interactions with Antigen?. Blood, 2011, 118, 2638-2638.	0.6	O
290	Primary Intraocular Lymphomas Display A Remarkably Biased Immunoglobulin Heavy Chain Gene Repertoire and Precisely Targeted Somatic Hypermutation Suggesting Antigenic Selection of the Neoplastic Cells. Blood, 2011, 118, 1574-1574.	0.6	0
291	Active Crosstalk with the Microenvironment Leading to Clonal Evolution in Chronic Lymphocytic Leukemia with Stereotyped IGHV4–34/IGKV2–30 Antigen Receptors Blood, 2012, 120, 2878-2878.	0.6	O
292	CLL Subsets with Distinct Stereotyped B Cell Receptors Have Distinct Epigenetic Make-up, Even Beyond IGHV Gene Mutational Status: DNA Methylation Profiling of IGHV-Unmutated CLL Stereotyped Subsets #6 and #8. Blood, 2012, 120, 3869-3869.	0.6	0
293	What Numbers Don't Say: Immunogenetic Evidence Shows That High-Count MBL Resembles Rai 0 CLL While Low-Count MBL Does Not Blood, 2012, 120, 2883-2883.	0.6	0
294	Targeting the LYN/HS1 Signaling Axis in Chronic Lymphocytic Leukemia. Blood, 2012, 120, 928-928.	0.6	O
295	Extreme Thrombocytosis Under Azacitidine in Patients with Myelodysplastic Syndrome. Blood, 2012, 120, 4961-4961.	0.6	O
296	High Expression of Activation-Induced Cytidine Deaminase and in Vivo Class Switch Recombination in Mantle Cell Lymphoma: Further Support for Antigen Involvement in Lymphomagenesis. Blood, 2012, 120, 1538-1538.	0.6	0
297	Skewing of the T Cell Receptor Gene Repertoire and Public Clonotypes in Cytotoxic T Cells of Patients with Chronic Idiopathic Neutropenia: A Role for Antigen Selection in Disease Development. Blood, 2012, 120, 831-831.	0.6	0
298	Clonal Selection in the Ontogeny and Evolution of Splenic Marginal Zone Lymphoma Confirming the Existence of Distinct Molecular Subtypes. Blood, 2012, 120, 1556-1556.	0.6	0
299	Validation of Stereotyped Immunoglobulin Heavy Chain CDR3 Sequences As Candidate Antigens for Immunotherapy of CLL. Blood, 2012, 120, 1775-1775.	0.6	O
300	The Mir17â ¹ /492 Cluster Is an Immunomodulator in CLL Regulating Distinct Functional Responses to Toll-Like Receptors in Subsets with Stereotyped Antigen Receptors. Blood, 2012, 120, 3862-3862.	0.6	0
301	V617F JAK2 Mutation and Bone Marrow Fibrosis Define Subgroups Of Patients With Polycythemia Vera and Essential Thrombocythemia With Shared Clinicobiological Profiles. Blood, 2013, 122, 5268-5268.	0.6	O
302	Ongoing Antigen Interactions In Splenic Marginal Zone Lymphoma: Revelations From The Analysis Of Intraclonal Diversification In Immunoglobulin Light Chain Genes. Blood, 2013, 122, 2999-2999.	0.6	0
303	Novel Gene Mutations In Chronic Lymphocytic Leukemia: Prevalence and Clinical Implications In A Series Of 3185 Cases - Initial Results From The European Research Initiative On CLL. Blood, 2013, 122, 1614-1614.	0.6	O
304	DNA Methylation Changes In Patients With Chronic Lymphocytic Leukemia Relapsing After Treatment Are Not Stochastic But Rather Selectively Affect Critical Pathways For B-Cell Physiology. Blood, 2013, 122, 4146-4146.	0.6	0
305	Antigen Selection of Multiple Myeloma Clonogenic B Cells as Evidenced by VH and VL Gene Mutations. Blood, 1997, 90, 1334-1334.	0.6	0
306	Overexpression of the Histone Methyltransferase $\hat{\bf l}\cdot\hat{\bf l}-\hat{\bf l}-2$ in Chronic Lymphocytic Leukemia Confers Protection from Apoptosis and Is Linked to Clinical Aggressiveness. Blood, 2014, 124, 1956-1956.	0.6	0

#	Article	IF	CITATIONS
307	Tracing the Ontogeny of IgG-Switched CLL: High-Throughput Immunogenetic Evidence. Blood, 2014, 124, 3285-3285.	0.6	O
308	Recurrent Mutations within the Nfkbie gene: A Novel Mechanism for NF-κB Deregulation in Aggressive Chronic Lymphocytic Leukemia. Blood, 2014, 124, 297-297.	0.6	О
309	Charting Unique Signatures of Somatic Hypermutation Amongst Chronic Lymphocytic Leukemia Patients Expressing IGHV4-34 Clonotypic B Cell Receptors. Blood, 2014, 124, 1969-1969.	0.6	O
310	How Many Ontogenetic Roads to Mantle-Cell Lymphoma? Immunogenetic and Immunohistochemical Evidence. Blood, 2014, 124, 3005-3005.	0.6	0
311	Skewing of the T-Cell Receptor Repertoire in Patients Receiving Rituximab after Allogeneic Hematopoietic Cell Transplantation: What Lies Beneath?. Blood, 2014, 124, 3962-3962.	0.6	O
312	Clinical Impact of Stereotyped Antigen Receptors in Chronic Lymphocytic Leukemia. Blood, 2014, 124, 3280-3280.	0.6	0
313	High-Throughput T-Cell Receptor Gene Repertoire Profiling in Chronic Lymphocytic Leukemia Reveals a Molecular Signature of Antigen Selection. Blood, 2014, 124, 1950-1950.	0.6	O
314	Tp63 Contributes to the Apoptosis Resistant Phenotype in Aggressive Chronic Lymphocytic Leukemia. Blood, 2015, 126, 4142-4142.	0.6	0
315	Chystallographic Evidence of Autologous Recognition By a Clonotypic B Cell Receptor in Chronic Lymphocytic Leukemia. Blood, 2015, 126, 4129-4129.	0.6	O
316	An Innovative High-Throughput Ex Vivo Drug Assay Incorporating the Native Microenvironment Reveals a Novel Mechanism of Action of Idelalisib in CLL. Blood, 2015, 126, 2485-2485.	0.6	0
317	ATM Mutations in Major Stereotyped CLL Subsets: Enrichment in Subset #2 is Associated with Unfavourable Outcome. Blood, 2015, 126, 1712-1712.	0.6	O
318	Genomic Disruption of the Histone Methyltransferase SETD2 in Chronic Lymphocytic Leukemia. Blood, 2015, 126, 365-365.	0.6	0
319	EGR2 Mutations in Chronic Lymphocytic Leukemia: A New Bad Player. Blood, 2015, 126, 4126-4126.	0.6	O
320	Personalized Modeling of Disease Evolution in CLL: Does Statistical Significance Translate into Predictive Accuracy?. Blood, 2015, 126, 2921-2921.	0.6	0
321	CLL with Mutated IGHV4-34 Antigen Receptors Is Clinically Heterogeneous: Antigen Receptor Stereotypy Makes the Difference. Blood, 2015, 126, 5263-5263.	0.6	O
322	Molecular Immunoprofiling the T Cell Repertoire after Rituximab Administration Reveals Frequent Oligoclonality Albeit with Different Patterns Depending on the Clinical Context. Blood, 2016, 128, 5792-5792.	0.6	0
323	ÎFΚÎÎΙΕ Deletions: A Novel Marker of Clinical Aggressiveness in Primary Mediastinal B-Cell Lymphoma. Blood, 2016, 128, 609-609.	0.6	O
324	IGHV Gene Replacement: A Potential Mechanism for Establishing Stereotypy in Certain Cases of Chronic Lymphocytic Leukemia. Blood, 2018, 132, 1841-1841.	0.6	0

#	Article	lF	CITATIONS
325	The Transcription Factor TAp63 Exerts Pro-Survival Effects in Chronic Lymphocytic Leukemia Acting through the BCL2 Pathway. Blood, 2018, 132, 3110-3110.	0.6	0
326	Pre-Transplant Genetic Susceptibility in Adult Allogeneic Hematopoietic Cell Transplant Recipients: Incidence and Clinical Relevance in Transplant-Associated Thrombotic Microangiopathy. Blood, 2018, 132, 3401-3401.	0.6	0
327	Longitudinal High-Throughput T Cell Repertoire Profiling of Chronic Lymphocytic Leukemia Patients Under Different Types of Treatment: Implications for Combination Strategies. Blood, 2018, 132, 4400-4400.	0.6	0
328	Detailed Functional Characterization of Splenic Marginal Zone Lymphoma: Uncovering Links between the Epigenetic and the Signaling Machinery. Blood, 2019, 134, 1512-1512.	0.6	0
329	Genome-Wide Histone Acetylation Profiling in Chronic Lymphocytic Leukemia Reveals a Distinctive Signature in Stereotyped Subset #8. Blood, 2019, 134, 1241-1241.	0.6	0
330	Functional Calcitriol/Vitamin D Receptor Signaling in Chronic Lymphocytic Leukemia. Blood, 2019, 134, 3019-3019.	0.6	0
331	Specific T Cell Receptor Gene Repertoire Profiles in Subgroups of CLL Patients with Distinct Genomic Aberrations. Blood, 2021, 138, 3749-3749.	0.6	0
332	Distinct Modes of Ongoing Antigen Interactions Shape Intraclonal Dynamics in Splenic Marginal Zone Lymphoma. Blood, 2021, 138, 1330-1330.	0.6	0
333	Chronic Graft-Versus-Host Disease Immunoprofiling Reveals T Cell Clonal Dynamics That Correlate with Disease Activity: A Novel Molecular Marker�. Transplantation and Cellular Therapy, 2022, 28, S273-S274.	0.6	0