Ferdinando Chiaradonna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1691060/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PGC1αĴβ Expression Predicts Therapeutic Response to Oxidative Phosphorylation Inhibition in Ovarian Cancer. Cancer Research, 2022, 82, 1423-1434.	0.4	14
2	Moving beyond the Tip of the Iceberg: DJ-1 Implications in Cancer Metabolism. Cells, 2022, 11, 1432.	1.8	7
3	The Role of Mitochondria in the Chemoresistance of Pancreatic Cancer Cells. Cells, 2021, 10, 497.	1.8	28
4	Suppression of the HBP Function Increases Pancreatic Cancer Cell Sensitivity to a Pan-RAS Inhibitor. Cells, 2021, 10, 431.	1.8	15
5	Cancer Metabolism as a New Real Target in Tumor Therapy. Cells, 2021, 10, 1393.	1.8	4
6	The Association between Vitamin D and Gut Microbiota: A Systematic Review of Human Studies. Nutrients, 2021, 13, 3378.	1.7	36
7	Vitamin D Supplementation and Cancer Mortality: Narrative Review of Observational Studies and Clinical Trials. Nutrients, 2021, 13, 3285.	1.7	23
8	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Tf 50 46	52 Td (editior 1,430

9	Fuzzy modeling and global optimization to predict novel therapeutic targets in cancer cells. Bioinformatics, 2020, 36, 2181-2188.	1.8	10
10	Hexosamine pathway inhibition overcomes pancreatic cancer resistance to gemcitabine through unfolded protein response and EGFR-Akt pathway modulation. Oncogene, 2020, 39, 4103-4117.	2.6	33
11	Central metabolism of functionally heterogeneous mesenchymal stromal cells. Scientific Reports, 2019, 9, 15420.	1.6	10
12	Design, Synthesis, and Preliminary Biological Evaluation of ClcNAcâ€6P Analogues for the Modulation of Phosphoacetylglucosamine Mutase 1 (AGM1/PGM3). European Journal of Organic Chemistry, 2018, 2018, 1946-1952.	1.2	7
13	Inhibition of the Hexosamine Biosynthetic Pathway by targeting PGM3 causes breast cancer growth arrest and apoptosis. Cell Death and Disease, 2018, 9, 377.	2.7	68
14	The Nutrient-Sensing Hexosamine Biosynthetic Pathway as the Hub of Cancer Metabolic Rewiring. Cells, 2018, 7, 53.	1.8	111
15	Analysis of mitochondrial metabolism in situ: Combining stable isotope labeling with selective permeabilization. Metabolic Engineering, 2017, 43, 147-155.	3.6	30
16	Transcriptional profiling of immortalized and K-ras-transformed mouse fibroblasts upon PKA stimulation by forskolin in low glucose availability. Genomics Data, 2016, 9, 100-104.	1.3	3
17	Protein Kinase A Activation Promotes Cancer Cell Resistance to Glucose Starvation and Anoikis. PLoS Genetics, 2016, 12, e1005931.	1.5	61
18	Redox-Mediated Suberoylanilide Hydroxamic Acid Sensitivity in Breast Cancer. Antioxidants and Redox Signaling, 2015, 23, 15-29.	2.5	13

#	Article	IF	CITATIONS
19	Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis, 2015, 36, S254-S296.	1.3	239
20	Metabolic reprogramming and dysregulated metabolism: cause, consequence and/or enabler of environmental carcinogenesis?. Carcinogenesis, 2015, 36, S203-S231.	1.3	93
21	New Insights into the Connection Between Histone Deacetylases, Cell Metabolism, and Cancer. Antioxidants and Redox Signaling, 2015, 23, 30-50.	2.5	11
22	Energy Metabolism Characterization of a Novel Cancer Stem Cellâ€ <scp>L</scp> ike Line 3 <scp>AB</scp> â€ <scp>OS</scp> . Journal of Cellular Biochemistry, 2014, 115, 368-379.	1.2	118
23	Genetic and molecular characterization of the human Osteosarcoma 3ABâ€OS cancer stem cell line: A possible model for studying osteosarcoma origin and stemness. Journal of Cellular Physiology, 2013, 228, 1189-1201.	2.0	46
24	Oncogenic K-ras expression is associated with derangement of the cAMP/PKA pathway and forskolin-reversible alterations of mitochondrial dynamics and respiration. Oncogene, 2013, 32, 352-362.	2.6	54
25	Mitochondrial Complex I Inhibitors and Forced Oxidative Phosphorylation Synergize in Inducing Cancer Cell Death. International Journal of Cell Biology, 2013, 2013, 1-14.	1.0	51
26	Glucose starvation induces cell death in K-ras-transformed cells by interfering with the hexosamine biosynthesis pathway and activating the unfolded protein response. Cell Death and Disease, 2013, 4, e732-e732.	2.7	70
27	Cancer cell growth and survival as a system-level property sustained by enhanced glycolysis and mitochondrial metabolic remodeling. Frontiers in Physiology, 2012, 3, 362.	1.3	24
28	Integrative transcriptional analysis between human and mouse cancer cells provides a common set of transformation associated genes. Biotechnology Advances, 2012, 30, 16-29.	6.0	7
29	From cancer metabolism to new biomarkers and drug targets. Biotechnology Advances, 2012, 30, 30-51.	6.0	62
30	Oncogenic Kâ€Ras decouples glucose and glutamine metabolism to support cancer cell growth. Molecular Systems Biology, 2011, 7, 523.	3.2	404
31	Mitochondrial Complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed cells. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 314-323.	0.5	119
32	Comparative transcriptional analysis between a K-ras cell model of transformation and the NCI60 human cancer cells collection. Journal of Biotechnology, 2010, 150, 103-104.	1.9	0
33	High throughput metabolomics analysis in normal and K-Ras transformed murine fibroblasts. Journal of Biotechnology, 2010, 150, 458-458.	1.9	0
34	Glutamine Deprivation Induces Abortive S-Phase Rescued by Deoxyribonucleotides in K-Ras Transformed Fibroblasts. PLoS ONE, 2009, 4, e4715.	1.1	131
35	Data recovery and integration from public databases uncovers transformation-specific transcriptional downregulation of cAMP-PKA pathway-encoding genes. BMC Bioinformatics, 2009, 10, S1.	1.2	6
36	Towards a systems biology approach to mammalian cell cycle: modeling the entrance into S phase of quiescent fibroblasts after serum stimulation. BMC Bioinformatics, 2009, 10, S16.	1.2	37

#	Article	IF	CITATIONS
37	RAS and PKA pathways in cancer: new insight from transcriptional analysis. Frontiers in Bioscience - Landmark, 2008, Volume, 5257.	3.0	27
38	Expression of transforming K-Ras oncogene affects mitochondrial function and morphology in mouse fibroblasts. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1338-1356.	0.5	68
39	Ras-dependent carbon metabolism and transformation in mouse fibroblasts. Oncogene, 2006, 25, 5391-5404.	2.6	104
40	Acquired glucose sensitivity of k-ras transformed fibroblasts. Biochemical Society Transactions, 2005, 33, 297-299.	1.6	10
41	Systems Biology and the Molecular Circuits of Cancer. ChemBioChem, 2004, 5, 1322-1333.	1.3	38
42	Systems Biology and the Molecular Circuits of Cancer. ChemInform, 2004, 35, no.	0.1	2
43	AML-associated translocation products block vitamin D(3)-induced differentiation by sequestering the vitamin D(3) receptor. Cancer Research, 2002, 62, 7050-8.	0.4	45
44	Common themes in the pathogenesis of acute myeloid leukemia. Oncogene, 2001, 20, 5680-5694.	2.6	72
45	Urokinase receptor-dependent and -independent p56/59hck activation state is a molecular switch between myelomonocytic cell motility and adherence. EMBO Journal, 1999, 18, 3013-3023.	3.5	59
46	Protein Kinase C-dependent in VivoPhosphorylation of Prourokinase Leads to the Formation of a Receptor Competitive Antagonist. Journal of Biological Chemistry, 1998, 273, 27734-27740.	1.6	20
47	Phosphorylation of Human Pro-Urokinase on Ser138/303 Impairs Its Receptor-dependent Ability to Promote Myelomonocytic Adherence and Motility. Journal of Cell Biology, 1997, 137, 779-791.	2.3	52