
Antonio Derossi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1690930/publications.pdf

Version: 2024-02-01

ANTONIO DEPOSSI

#	Article	IF	CITATIONS
1	Extending 3D food printing application: Apple tissue microstructure as a digital model to create innovative cereal-based snacks. Journal of Food Engineering, 2022, 316, 110845.	2.7	10
2	Programmable texture properties of cereal-based snack mediated by 3D printing technology. Journal of Food Engineering, 2021, 289, 110160.	2.7	50
3	Characterizing the Rheological and Bread-Making Properties of Wheat Flour Treated by "Gluten FriendlyTM―Technology. Foods, 2021, 10, 751.	1.9	8
4	Reaction mechanisms for volatiles responsible of off-odors of fresh cut melons. Acta Horticulturae, 2021, , 15-22.	0.1	1
5	From biorefinery of microalgal biomass to vacuum impregnation of fruit. A multidisciplinary strategy to develop innovative food with increased nutritional properties. Innovative Food Science and Emerging Technologies, 2021, 70, 102677.	2.7	11
6	Study of different technological strategies for sugar reduction in muffin addressed for children. NFS Journal, 2021, 23, 44-51.	1.9	7
7	Drawing the scientific landscape of 3D Food Printing. Maps and interpretation of the global information in the first 13Âyears of detailed experiments, from 2007 to 2020. Innovative Food Science and Emerging Technologies, 2021, 70, 102689.	2.7	17
8	Could 3D food printing help to improve the food supply chain resilience against disruptions such as caused by pandemic crises?. International Journal of Food Science and Technology, 2021, 56, 4338-4355.	1.3	15
9	Rheological properties, dispensing force and printing fidelity of starchy-gels modulated by concentration, temperature and resting time. Food Hydrocolloids, 2021, 117, 106703.	5.6	22
10	Analyzing the most promising innovations in food printing. Programmable food texture and 4D foods. Future Foods, 2021, 4, 100093.	2.4	15
11	Manufacturing personalized food for people uniqueness. An overview from traditional to emerging technologies. Critical Reviews in Food Science and Nutrition, 2020, 60, 1141-1159.	5.4	36
12	Extending the 3D food printing tests at high speed. Material deposition and effect of non-printing movements on the final quality of printed structures. Journal of Food Engineering, 2020, 275, 109865.	2.7	42
13	Reuse of spent espresso coffee as sustainable source of fibre and antioxidants. A map on functional, microstructure and sensory effects of novel enriched muffins. LWT - Food Science and Technology, 2020, 119, 108877.	2.5	20
14	Analyzing the effects of 3D printing process per se on the microstructure and mechanical properties of cereal food products. Innovative Food Science and Emerging Technologies, 2020, 66, 102531.	2.7	36
15	Mimicking 3D food microstructure using limited statistical information from 2D cross-sectional image. Journal of Food Engineering, 2019, 241, 116-126.	2.7	23
16	Comparison of different combined processes of preservation on the nutritional and sensory changes of "ready to eat―mackerel fillets. Journal of Food Processing and Preservation, 2019, 43, e13886.	0.9	4
17	Critical Variables in 3D Food Printing. , 2019, , 41-91.		12

18 Cereal-Based and Insect-Enriched Printable Food. , 2019, , 93-116.

ANTONIO DEROSSI

#	Article	IF	CITATIONS
19	3D Printed Food From Fruits and Vegetables. , 2019, , 117-149.		19
20	On printability, quality and nutritional properties of 3D printed cereal based snacks enriched with edible insects. Food Research International, 2018, 106, 666-676.	2.9	200
21	Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. Journal of Food Engineering, 2018, 220, 65-75.	2.7	224
22	Printing a blend of fruit and vegetables. New advances on critical variables and shelf life of 3D edible objects. Journal of Food Engineering, 2018, 220, 89-100.	2.7	174
23	How grinding level and brewing method (Espresso, American, Turkish) could affect the antioxidant activity and bioactive compounds in a coffee cup. Journal of the Science of Food and Agriculture, 2018, 98, 3198-3207.	1.7	46
24	Effects of formulation and process conditions on microstructure, texture and digestibility of extruded insect-riched snacks. Innovative Food Science and Emerging Technologies, 2018, 45, 344-353.	2.7	106
25	Characterizing apple microstructure via directional statistical correlation functions. Computers and Electronics in Agriculture, 2017, 138, 157-166.	3.7	5
26	Ultrasound-assisted extraction to improve the recovery of phenols and antioxidants from spent espresso coffee ground: a study by response surface methodology and desirability approach. European Food Research and Technology, 2017, 243, 835-847.	1.6	32
27	Understanding the drying kinetic and hygroscopic behaviour of larvae of yellow mealworm (Tenebrio) Tj ETQq1 1	0.784314	၊ rggT /Overld
28	How the variance of some extraction variables may affect the quality of espresso coffees served in coffee shops. Journal of the Science of Food and Agriculture, 2016, 96, 3023-3031.	1.7	24
29	Could the 3D Printing Technology be a Useful Strategy to Obtain Customized Nutrition?. Journal of Clinical Gastroenterology, 2016, 50, S175-S178.	1.1	56
30	The use of multivariate analysis as a method for obtaining a more reliable shelf-life estimation of fresh-cut produce: a study on pineapple. Acta Horticulturae, 2016, , 131-136.	0.1	3
31	On the inverse problem of the reconstruction of food microstructure from limited statistical information. A study on bread. Journal of Food Engineering, 2016, 184, 69-69.	2.7	2
32	Variables affecting the printability of foods: Preliminary tests on cereal-based products. Innovative Food Science and Emerging Technologies, 2016, 38, 281-291.	2.7	134
33	The electronic nose system: study on the global aromatic profile of espresso coffee prepared with two types of coffee filter holders. European Food Research and Technology, 2016, 242, 2083-2091.	1.6	10
34	Measuring the food microstructure by two-point cluster function. Journal of Food Engineering, 2016, 173, 42-48.	2.7	4
35	Application of multivariate accelerated test for the shelf life estimation of fresh-cut lettuce. Journal of Food Engineering, 2016, 169, 122-130.	2.7	36
36	Influence of different blanching methods on colour, ascorbic acid and phenolics content of broccoli. Journal of Food Science and Technology, 2016, 53, 501-510.	1.4	65

ANTONIO DEROSSI

#	Article	IF	CITATIONS
37	Effects of Drying Processing Conditions on the Quality of Uncooked and Cooked Pasta Made Up of Nonconventional Raw Material. Cereal Chemistry, 2015, 92, 350-357.	1.1	3
38	Changes in the Aromatic Profile of Espresso Coffee as a Function of the Grinding Grade and Extraction Time: A Study by the Electronic Nose System. Journal of Agricultural and Food Chemistry, 2015, 63, 2321-2327.	2.4	61
39	Application of vacuum impregnation with anti-freezing proteins to improve the quality of truffles. Journal of Food Science and Technology, 2015, 52, 7200-7208.	1.4	13
40	Effect of enzymatic and technological treatments on solubilisation of arabinoxylans from brewer's spent grain. Journal of Cereal Science, 2015, 65, 162-166.	1.8	25
41	A study of the estimated shelf life of fresh rocket using a non-linear model. Journal of Food Engineering, 2015, 150, 19-28.	2.7	61
42	Effect of proteins on the formation of starch–lipid complexes during extrusion cooking of wheat flour with the addition of oleic acid. International Journal of Food Science and Technology, 2015, 50, 515-521.	1.3	26
43	Study and optimization of osmotic dehydration of cherry tomatoes in complex solution by response surface methodology and desirability approach. LWT - Food Science and Technology, 2015, 60, 641-648.	2.5	37
44	Modeling phenolic content during storage of cut fruit and vegetables: A consecutive reaction mechanism. Journal of Food Engineering, 2014, 140, 1-8.	2.7	41
45	Reconstruction of food microstructure via statistical correlation functions. The use of lineal-path distribution functions. Journal of Food Engineering, 2014, 142, 9-16.	2.7	8
46	PREDICTION OF HEATING LENGTH TO OBTAIN A DEFINITE <i>F VALUE</i> DURING PASTEURIZATION OF CANNED FOOD. Journal of Food Process Engineering, 2013, 36, 211-219.	1.5	3
47	Application of Vacuum Impregnation Techniques to Improve the pH Reduction of Vegetables: Study on Carrots and Eggplants. Food and Bioprocess Technology, 2013, 6, 3217-3226.	2.6	16
48	Statistical Description of Food Microstructure. Extraction of Some Correlation Functions From 2D Images. Food Biophysics, 2013, 8, 311-320.	1.4	15
49	Use of Lineal-Path Distribution Function as Statistical Descriptor of the Crumb Structure of Bread. Food Biophysics, 2013, 8, 223-232.	1.4	7
50	Application of pulsed vacuum acidification for the pH reduction ofÂmushrooms. LWT - Food Science and Technology, 2013, 54, 585-591.	2.5	18
51	Cooking quality characterisation of †̃spaghetti' based on soft wheat flour enriched with oat flour. International Journal of Food Science and Technology, 2013, 48, 2348-2355.	1.3	14
52	Modelling sensorial and nutritional changes to better define quality and shelf life of fresh-cut melons. Journal of Agricultural Engineering, 2013, 43, 6.	0.7	14
53	Modelling sensorial and nutritional changes to better define quality and shelf life of fresh-cut melons. Journal of Agricultural Engineering, 2013, 44, 6.	0.7	11
54	Statistical Description of Fat and Meat Phases of Sausages by the Use of Lineal-Path Distribution Function. Food Biophysics, 2012, 7, 258-263.	1.4	7

#	Article	IF	CITATIONS
55	Starch–lipid complex formation during extrusion-cooking of model system (rice starch and oleic) Tj ETQq1 2 2012, 234, 517-525.	l 0.784314 1.6	rgBT /Overloc 41
56	Study of starch-lipid complexes in model system and real food produced using extrusion-cooking technology. Innovative Food Science and Emerging Technologies, 2011, 12, 610-616.	2.7	98
57	pH reduction and vegetable tissue structure changes of zucchini slices during pulsed vacuum acidification. LWT - Food Science and Technology, 2011, 44, 1901-1907.	2.5	15
58	STUDY ON PRESTABILIZATION OF PUMPKIN (<i>CUCURBITA MOSCHATA</i>) BY OSMOTIC DEHYDRATION IN QUATERNARY COMPLEX SOLUTION. Journal of Food Process Engineering, 2011, 34, 398-413.	1.5	5
59	An alternative method for the industrial monitoring of osmotic solution during dehydration of fruit and vegetables: A test-case for tomatoes. Journal of Food Engineering, 2011, 105, 186-192.	2.7	8
60	A Review on Acidifying Treatments for Vegetable Canned Food. Critical Reviews in Food Science and Nutrition, 2011, 51, 955-964.	5.4	25
61	Reduction in the pH of vegetables by vacuum impregnation: A study on pepper. Journal of Food Engineering, 2010, 99, 9-15.	2.7	47
62	STUDY ON INTERACTION AMONG EXTRUSION OOKING PROCESS VARIABLES AND ENZYME ACTIVITY: EVALUATION OF EXTRUDATE STRUCTURE. Journal of Food Process Engineering, 2010, 33, 65-82.	1.5	4
63	Vitamin C kinetic degradation of strawberry juice stored under non-isothermal conditions. LWT - Food Science and Technology, 2010, 43, 590-595.	2.5	38
64	Study of cooking quality of spaghetti dried through microwaves and comparison with hot air dried pasta. Journal of Food Engineering, 2009, 95, 453-459.	2.7	19
65	Effects of Microwave Drying on Lipid Oxidation of Stuffed Pasta. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 827-834.	0.8	4
66	Mass transfer during osmotic dehydration of apples. Journal of Food Engineering, 2008, 86, 519-528.	2.7	55
67	Study on formation of starch–lipid complexes during extrusion-cooking of almond flour. Journal of Food Engineering, 2008, 87, 495-504.	2.7	89
68	STUDY ON OPERATING CONDITIONS OF ORANGE DRYING PROCESSING: COMPARISON BETWEEN CONVENTIONAL AND COMBINED TREATMENT. Journal of Food Processing and Preservation, 2008, 32, 751-769.	0.9	6
69	Effects of operating conditions on oil loss and structure of almond snacks. International Journal of Food Science and Technology, 2008, 43, 430-439.	1.3	18
70	Use of humectants for the stabilization of pesto sauce. International Journal of Food Science and Technology, 2008, 43, 1041-1046.	1.3	22
71	Prediction of water activity in vegetable creams: Note 2. Journal of Food Engineering, 2007, 79, 1280-1286.	2.7	1
72	Prediction of water activity in vegetables creams: Note 1. European Food Research and Technology, 2006, 223, 216-224.	1.6	3

ANTONIO DEROSSI

#	Article	IF	CITATIONS
73	Combined treatments of blanching and dehydration: study on potato cubes. Journal of Food Engineering, 2005, 68, 289-296.	2.7	72
74	Effects of operating conditions on oil loss and properties of products obtained by co-rotating twin-screw extrusion of fatty meal: preliminary study. Journal of Food Engineering, 2005, 70, 109-116.	2.7	25
75	Study on Different Emulsifiers to Retain Fatty Fraction During Extrusion of Fatty Flours. Cereal Chemistry, 2005, 82, 494-498.	1.1	7
76	Acidifying-blanching of 'Cicorino' leaves: effects of recycling of processing solution on product pH. International Journal of Food Science and Technology, 2004, 39, 811-815.	1.3	6
77	IMPROVING FATTY EXTRUDATE STRUCTURE WITH AMYLASE AND PROTEASE. Journal of Food Biochemistry, 2004, 28, 387-403.	1.2	8
78	MICROWAVE BLANCHING OF SLICED POTATOES DIPPED IN SALINE SOLUTIONS TO PREVENT ENZYMATIC BROWNING. Journal of Food Biochemistry, 2004, 28, 75-89.	1.2	11
79	The study of acidifying blanching of pickled "Cicorino―leaves using Response Surface Methodology. Journal of Food Engineering, 2004, 62, 331-335.	2.7	7
80	Prevention of enzymatic browning in sliced potatoes by blanching in boiling saline solutions. LWT - Food Science and Technology, 2003, 36, 657-665.	2.5	79
81	The Application of Vacuum Impregnation Techniques in Food Industry. , 0, , .		18
82	How Much Caffeine in Coffee Cup? Effects of Processing Operations, Extraction Methods and Variables. , 0, , .		10